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The Problem Setup

@ In a multiple testing problem, we observe a data set X ~ P and reject a
subset of hypotheses Hy,...,Hn.

@ Assuming P € &, each hypothesis H; C & represents a submodel;
WLOG, the i alternative hypothesis is 2\ H;.

@ We assume that the computed p-value p;(X) to test each H; is marginally
super-uniform under H;.

@ Let 54 (P) = {i: P € 54} denote the set of true null hypotheses and
define my = |74

@ Multiple testing procedure is a decision %(X) C [m] designating the set of
rejected hypotheses.

@ An analyst who rejects H; for each i € Z(X) makes V = |ZNJ#| false
rejections (discoveries).
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FDP and FDR

@ Benjamini and Hochberg (1995) define False Discovery Proportion (FDP)
as
%
FDP(%#(X); P) = IVl
@ The False Discovery Rate (FDR) is defined as expected FDP:
FDRp(%#) = Ep|FDP(%; X)]

@ A standard goal in multiple testing is to maximize the expected number of
rejections while controlling the FDR at a preset significance level a.
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Benjamini-Hochberg (BH) procedure

@ The most widely used method for FDR control is BH procedure, which is
an example of more general class step-up procedure.

@ For py < --- < pm), the step-up procedure for increasing sequence of
thresholds 0 < A(1) < --- < A(m) < 1 finds the largest index r for which
pry <A(r)andrejectsall H; 51 <i<r.

@ Basically, we reject the hypotheses with the smallest R(X) p-values
where R(X) = max{r: p)(X) < A(r)}.

@ The BH procedure takes Ay(r) =ar/m.

@ For general family of thresholds A,(r) that are non-decreasing in o and
r, we denote the generic step-up procedure as SUx (o).

@ We denote the corresponding testing procedures as 28H(®) and 25V (@),
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FDR control issues |

@ Note:

ror-z[ V]~ ¥ e[
iesty
where V; = 1{H; is rejected}.
@ Benjamini and Hochberg (1995) proved that BH(«) procedure controls
FDR at exactly amgy/m if the p-values are independent and each term of
the above sum is controlled at ot/ m.

@ Benjamini and Yekutieli (2001) showed that BH(a) procedure controls
FDR conservatively at amg/m provided p_1 = (P1,---,Pi—1,Pit1s---Pm)
is Positive Regression Dependent (PRD) on p;, for every i € 5#4: this
condition being called Positive Regression Dependence on a Subset
(PRDS,).
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FDR control issues Il

@ Benjamini and Yekutieli (2001) also showed that under arbitrary
dependence structure of p-values, a much more conservative BH(a /L)
controls FDR at level &, where Ly, =Y, i~ =logm+ &(1). This method
is called the Benjamini-Yekutieli (BY) procedure.

@ It has also been shown that a general SU procedure with
Aq(r) = ap(r)/mwhere B(r) =Y_, iv(i) with v being a probability
measure on {1,...,m}, controls FDR conservatively under arbitrary
dependence between p-values.

@ These methods control FDR under worse-case dependence
assumptions, but their generality comes at a price of substantial
conservatism and diminished power compared to BH procedure.
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Conditional Calibration |

@ This paper introduces a method to adaptively calibrate separate rejection
threshold for each p-value to control each term of FDR sum, which we
call FDR contribution of H;.

@ Let 7j(c; X) be rejection threshold for p;, with calibration paramater ¢ > 0.

@ We will aim to calibrate the threshold for p;, choosing ¢; to directly control
the i term of the sum

3[R

Rv1

@ We try to control a more tractable conditional expectation to free the
calculation from nuisance parameters, given some conditioning statistic
Si.

@ Only requirement of S;:

sup Pp(pi < a|S;) < @ a.s. Va € [0,1]
PeH;
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Conditional Calibration Il

@ Under independence the super-uniformity condition holds for S; = p_;.

Let p<0 = (py,...,pi_1,0,Pis1,--.,Pm). If Z is a step-up procedure with
threshold sequence A(1),...,A(m), then the following are equivalent:

Q pi < A(R(PVY),
Q icZ(p),
Q %(p) = %(p"9).

@ Let RO = R(p<9)), which only depends on p_;. Then for standard BH
procedure under independence,
_ 1{p,<ocR°/m}| 1aR’ o

— RO PR m ~m

i

Marginalizing over p_; and summing over i € 4 yields FDR < amg/m.
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Conditional Calibration IlI

R—l R—l R—l
1 1 1
R(piip—;) ™"
] | — ] 3
a/m ! <a/m aLm/m |
Y - N
a DPi a P a Pi

(a) Independent case: R is con- (b) Positive-dependent case: R (c) Worst case: the other p-
stant on the event where p; is is decreasing in p;, since the values are adversarially config-
rejected, {p; < aR/m}, as a other p-values are increasing in ured so that R is always just
result of Lemma 1. Pi. large enough to reject p;.

@ The number of rejections R also depend on all Cy,...,Cm. We substitute
an estimatior R; > 1 for eventual value of | Z(X) U {i}|.

@ Note that R; should be lower bound for R, so that V;/R; is a good upper
bound for V;/(RV 1).
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Step 1: Calibration

@ We use R to estimate Ep[Vi/(RV1)|S;] as a function of the calibration
parameter ¢, which we call to be valid if:

1 {pl SA T,'(C)} SI:| <

i

3R

9/(c:S)) = sup Ep [
PEH,'

@ We choose ¢;(S;) =sup{c > 0;g;(c; S/) < a/m}.
@ g;(c;S;) is non-decreasing and any ¢ < ¢; is valid. However, if g/ is
discontinuous, ¢ itself may not be valid.

@ We consider a sequence {C;;}+ > Cj; 1 ¢; and say the ¢; is maximal if
U¢[0, &i ] includes every valid ¢, almost surely.
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Step 2: Initial rejection

@ We now initialize the rejection set via:
A ={i:p < 7(Cj)}

@ In practice instead of calculating ¢;, we use g — values
gi(X) = min{c: p; < 7;(c)} since they are easy to calculate for SU
procedures.

@ For the maximal ¢;, i € #Z.. iff the observed g; is a valid calibration
parameter, so we alternatively write,

Xy ={i:9;(q;;Si) < o/m}

o LetR, =|%,|. fR,. >R, VieZ,, weset#=%,. Otherwise, we
prune the rejection set further.
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Step 3: Randomized Pruning

@ If there is some i € %, for which R; > R, , then we must prune the
rejection set via a secondary BH procedure.

@ For use generated random variables uy,...,un g Unif(0,1), let,
R(X;u)=max{r:|{ie %, u<r/R} >r

and reject H; for the R indices with i € %, and u; < R/R..
@ This procedure is equivalent to BH(1) procedure on “p-value”
pi= uiR;/R, foric %Z..
@ While this pruning step introduces extra randomness, the rejection set

PN

includes {i: R; < R(X;1,)} almost surely.
@ We call a calibrated procedure safe is pruning is never necessary.

Assuming conditional superuniformity of p-values and that ¢; is chosen to
guarantee term-wise FDR control Vi, the three step procedure controls FDR
at or below level armg/m.
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The dependence-adjusted BH and BY procedures

@ If we use the effective threshold 7; = 87 and the estimator
R; = |#B1(r®) U {i}|, we call the method dependence-adjusted BH
procedure and denote it using dBH(yar).

e If y=1/Ln, we denote it by dBY ()

B a/m 7
=

o« Pi
{a; <&} {g; <&}

(a) The dBH; () procedure in the positive- (b) The dBY(a) procedure, which is often
dependent case. much more powerful than BY ().
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dBHi () and dBY(a) procedure

@ Definition: For given conditioning statistic S;, we say p_; is conditionally
positive regression dependent (CRPD) if P(p_; € A|p;,S;) is a.s.
non-decreasing in p; for any increasing set A. If p_; is CPRD on
p; Vi € 74, we say p-values are CPRD on subset (CPRDS).

Assume ¢4, ...,Cm are maximal, then:
@ /f the p-values are independent with p; uniform under H;, then dBH; ()
procedure with S; = p_; is identical to BH(a) procedure.
© Ifthe p-values are CPRDSY P € 22, then BH, () procedure is safe and
uniformly more powerful than the BH(a) procedure.
© For arbitrary dependence, the dBY (a) procedure is safe, and uniformly
more powerful than the BY (o) procedure.

© Recall the thresholds A, for generic SU procedure, then for arbitrary
dependence, the dSUa () procedure is safe, and uniformly more
powerful than the SUx (o) procedure.
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Identifying conditioning statistic S;

@ To facilitate calibration, S; should eliminate or mitigate the influence of
nuisance parameters on the conditional distribution of X.

@ Calibration is conceptually simplified if S; is a sufficient statistic for the
null submodel H;, so that conditional distribution of X is known under H;,
in which case we call H; to be conditionally simple. Otherwise, we call it
conditionally composite and P; is least favorable for calibrating ¢; if it
almost surely attains the supremum g;(c;; S;).

@ Example: For full ranked exponential family,
X ~ fo(x) = e TO-AOf (x), 6 c © CRY

Fori=1,...,m<d, H;takes form H;: 6; =0 or H;: 6 < 0. The UMPU test
rejects H; when T;(X) is extreme, conditional on the value of S; = T_;.

@ For one sided testing, H; : 6; < 0 is conditionally composite and it turns
our that under some mild condition, 6; = 0 is least favorable.
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Recursive refinement of R;

Performing Steps 1 and 2 our method will make us estimate the rejection
rejections once for all the m p-values and hence changing (R, ..., Rp) will
affect the entire procedure and change & in turn. We however use a better
procedure called recursive refinement of the estimator.

@ Denote the original estimator as ,‘:?f”, which leads to original calibration
parameter, &,(1) and initial rejection set %’S).
@ We define the recursively refined estimator as:
RED — 1 2B (x)u{iy], k> 1

If we use effective BH threshold with the dBH, (o) estimator, we call the
resulting procedure dBH}?(oc) procedure, or dBY?(a) if y=1/Lp.

Assume éﬁk) .,&%) are maximal Vi, k. If #") is safe, then for every k > 1,
2%+ js safe and uniformly more powerful than %),
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Multivariate z-statistics

Assume Z ~ Ny(u,¥) with X - 0 and all X;; = 1 and we wish to test
Hi:uj=0o0rH;:u<0fori=1,...,m<d. p; are the standard one- or
two-sided p-values based on Z;. Now,

_ 1 I5—1 1 /s —1 1 I——1
fu(z)—WWeXp{Hz Z—EZZ Z—éuz u

It can be shown that taking S;=z_;— )I,,-ﬁ,-Z,‘,1 zj, eliminates the influence of
u_; from the problem, leaving a one-parameter exponential family model in y;
with Z; as sufficient statistic.
To carry out dBH,(«) procedure, we plug in ¢ = g;(Z) in

{gi<c}

Fo @ oy ) =

o

The expectation is now easy to calculate since given S;, we simply integrate
with respect to Z; ~ N(0,1).
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Multivariate t-statistics

In the previous problem, we now assume that ¥ = 62V where ¥ > 0 is known
but 62 > 0 is unknown. WLOG, assume V;; = 1. To estimate 62, we observe
another independent vector W ~ N,_4(0,62/,_g).

As before, wetest Hi: u=0or H;: u; <0fori=1,...,m< d, the usual test
statistic is

Z:
T, = 5 where (n— )62 = || W|[2 ~ 022 4

It can be shown that conditioning the resulting (d + 1)-parameter exponential
family on S; = (z_,- — \II_,-’,-\IJZI.1 Zi /|| W2 +Z,2> yields a one-parameter
exponential family with parameter p;/c?2.

Therefore, solving the expectation to control the contribution to FDR boils
down to a simple integration w.r.t. T; ~ t,_g4.
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