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Abstract

Principal Component Analysis is a widely studied methodology as it is a useful technique for

dimension reduction. In this report, we discuss Sparse Principal Component Analysis (SPCA),

which is a modification over PCA. This method is able to resolve the interpretation issue of PCA.

Additionally, it provides sparse loadings to the principal components. The main idea of SPCA

comes from the relationship between PCA problem and regression analysis. We also discuss

GAS-PCA, which is a generalization over SPCA and this method performs better than SPCA,

even in finite sample cases. Our report is mainly based on Zou et al. (2006) and its extension

Leng and Wang (2009).
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1 INTRODUCTION

1 Introduction

In the literature of data processing and dimension reduction, Principal Component Analysis (Jolliffe

(1986), Jolliffe (2022)) has been extensively studied. It has widespread applications in the fields of

biology (Todorov et al. (2018)), engineering (Tzeng and Berns (2005))and in many other areas (Yoo

and Shahlaei (2018)). PCA is a methodology to select those linear combinations of original variables

which are able to capture maximum variability of the data. The concept of Singular Value Decompo-

sition (SVD) can be incorporated to calculate the PCs.

Let X be an n× p data matrix. Here n is the number of observations and p is the number of indepen-

dent variables. Without loss of generality, it can be assumed that the column means of X are zero ,

i.e. the columns of X are centered. Also, suppose that the SVD of X is given as:

X = UDVT .

Note that, Z=UD are the Principal Components and the columns of V are the corresponding loadings

of the PCs. Here, D2
ii/n is the sample variance of i-th PC. If only the first q(<< p) PCs are chosen

to represent the data then a significant amount of dimension reduction is possible. PCA is beneficial

mainly for the following two properties:

i) It is able to capture the maximum variability among the columns of X sequentially. Hence, a

very minimum amount of information loss is incurred.

ii) PCs are uncorrelated, hence different PCs can be used and interpreted independently of other

PCs.

But one of the crucial drawback of PCA is that, each PC is a linear combination of all the p variables

and the loadings are non-zero. This creates an interpretation issue for the derived PCs.

Similar interpretation issue is common for multiple linear regression model. There the variable selec-

tion steps in. LASSO (Tibshirani (1996)) is a popular methodology for model selection. It produces
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2 THE LASSO AND ELASTIC NET

a sparse model with greater prediction accuracy. As a generalization of LASSO, Zou and Hastie

(2003) has proposed Elastic Net. This report will discuss the a different approach of deriving the PCs

with sparse loading, viz. SPCA. SPCA uses the fact that PCA can be written as a regression-type

optimization problem.

The rest of the report is organised as follows: In Section (2) we present the popular variable selec-

tion methods in regression analysis viz. LASSO and Elastic Net. Section (3) includes a discussion

regarding the relationship between regression analysis and PCA. This section provides a method of

formulating the SPCA-criterion and also discusses numerical soluton techniques. Section (4) deals

with one of the extensions of SPCA, which is called GAS-PCA. All the theories have been imple-

mented in the Section (5) via synthetic data analysis and real data analysis. Finally, we conclude in

the Section (6).

2 The LASSO and Elastic Net

Let us consider a regression model with n observations and p regressors. Y = (y1, . . . ,yn)
′ is the

reponse vector. X is the design matrix. Let X j = (x1i, . . . ,xn j). Assume that, X are Y are centered.

LASSO uses L1 norm regularization technique and the lasso estimate is given by,

β̂L = arg min
β

(Y−Xβ )T (Y−Xβ )+λ

p

∑
j=1

| β j |

Here λ is the tuning parameter. Due to the nature of L1 penalty, some coefficients shrinks towards

zero. This allows us to have a sparse model with higher prediction accuracy. But one of the major

disadvantages of LASSO is that, in case of high-dimensional regression (n << p), LASSO fails to

select more than n predictors. This drawback has been overcome by the Elastic Net. It combines the
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3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

L1 and L2 penalties. For any non-negative λ1 and λ2 the elastic net estimate is given by,

β̂E = (1+λ2)

{
arg min

β

(Y−Xβ )T (Y−Xβ )+λ1

p

∑
j=1

| β j |+λ2

p

∑
j=1

| β j |2
}

Clearly, for λ2 = 0 elastic net reduces to LASSO. For n < p case we can choose λ2 > 0, thus it is

helpful in high-dimensional regression problems.

3 Sparse Principal Component analysis (SPCA)

In both LASSO and Elastic Net sparsity is achieved only through the L1 penalty. Jolliffe et al. (2003)

introduced SCoTLASS procedure which obtains sparse loadings by imposing L1 penalty on PCA.It

successively maximizes the variance aT
k (X

T X)ak subject to aT
k ak = 1, (k ≥ 2), aT

h ak = 0, (h< k) and

∑
p
j=1 | ak j |≤ t, for some tuning parameter t. However, the loadings from SCoTLASS are not sparse

enough when high percentage of explained variability is required. In this report a different approach

will be shown to obtain the PCs without using the variance maximization.

3.1 Direct Sparse Approximation

The main idea of this report lies on the fact that, since each PC can be expressed as a linear combina-

tion of the p variables, it is possible to recover the loadings by regressing PC on the p variables.

Theorem 1. For each i denote the i-th PC by Zi = UDi. Consider a positive λ and the ridge estimate

is given by,

β̂R = arg min
β

||Zi −Xβ ||2 +λ ||β ||2. (1)

Let v̂ = β̂R

||β̂R||
, then v̂ =Vi.
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3.2 SPCA Criterion 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

Proof. Note that, XT X = VD2VT and VT V = I. Hence we have,

β̂R = (XT X+λ I)−1XT Zi

= (XT X+λ I)−1XT (XVi)

=Vi
D2

ii

D2
ii +λ

Hence we have v̂ =Vi.

Theorem (1) establishes the connection between PCA and the regression method. Note that, when

n> p and X is of full column rank, the theorem does not require a positive λ . But for n< p and λ = 0,

multiple linear regression has no unique solution which is Vi. The same happens when n > p and X

is not a full rank matrix. On the other hand PCA gives unique solution for all the cases. This issue is

eliminated by imposing positive ridge penalty. Normalization of the estimates makes v̂ independent

of λ . Thus it is only used for reconstruction of the PCs and not for penalization.

If we add an L1 penalty to (1) and consider the following optimization problem,

β̂ = arg min
β

(Zi −Xβ )T (Zi −Xβ )+λ ||β ||2 +λ1||β ||1. (2)

We consider V̂i =
β̂

||β̂ ||
as an approximation to Vi. Consequently, XV̂i is the i-th approximated PC. Note

that, (2) differs from elastic net by a scaling factor (1+λ ). Zou and Hastie (2003) called it Naive

Elastic Net. Since we are normalizing the coefficient, the effect of scaling factor is irrelevant. A large

λ1 will provide a sparse β̂ and hence a sparse Vi.

3.2 SPCA Criterion

Theorem (1) depends on the results of PCA and so it is not an alternative procedure. It can be used in

a two-stage exploratory analysis. First, we need to perform PCA, then using (2) it is possible to find
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3.2 SPCA Criterion 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

a sparse approximation.

In this section we will discuss a ”self-contained” regression type criterion to derive PCs. Let xi denote

the i-th row of X. We first state the theorem to get the leading PC and in the next theorem we will

generalize it for first k PCs.

Theorem 2. For any λ > 0, let

(α̂, β̂ ) = arg min
α,β

n

∑
i=1

||xi −αβ
T xi||2 +λ ||β ||2 (3)

subject to ||α||2 = 1.

Then β̂ ∝ V1.

Theorem 3. Suppose we are considering the first k PCs. Let Ap×k = [α1, . . .αk] and Bp×k = [β1, . . .βk].

Then for any λ > 0 let,

(Â, B̂) = arg min
A,B

n

∑
i=1

||xi −ABT xi||2 +λ

k

∑
i=1

||β j||2 (4)

subject to AT A = Ik×k.

Then β̂ j ∝ Vj for j = 1,2, . . . ,k.

Proof. Let us first have the following lemma.

Lemma 1. Consider the ridge regression criterion,

Cλ (β ) = ||y−Xβ ||2 +λ ||β ||2

Then if β̂ = argminβ Cλ (β ) we have,

Cλ (β̂ ) = yT (I−Sλ )y
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3.2 SPCA Criterion 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

where Sλ is the ridge operator and it is given by,

Sλ = X(XT X+λ I)−1XT

Proof. Differentiating Cλ with respect to β we get,

−XT (y−Xβ̂ )+λβ̂ = 0

pre-multiplying both sides by β̂ T we get,

λ ||β̂ ||2 = (y−Xβ̂ )Xβ̂

Using the fact that Xβ̂ = Sλ y and ||y−Xβ̂ ||2 = (y−Xβ̂ )T y−y−Xβ̂ T Xβ we get, Cλ (β̂ ) = yT (I−

Sλ )y.

Let,

Cλ (A,B) =
n

∑
i=1

||xi −ABT xi||2 +λ

k

∑
j=1

||β j||2 (5)

Now using some linear algebra trick it is easy to see that,

n

∑
i=1

||xi −ABT xi||2 = Tr(XT X)+Tr(BT XT XB)−2Tr((AT XT X)B)

For fixed A we have the minimizer of (5) as,

β̂ j = (XT X+λ I)−1(XT X)α j, for j = 1, . . . ,k,
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3.2 SPCA Criterion 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

or equivalently,

B̂ = (XT X+λ I)−1(XT X)A

And thus,

Â = arg max
A

Tr
(

AT XT X(XT X+λ I)−1XT XA
)
.

subject to AT A = Ik.

Since the eigen-vectors of XT X(XT X+λ I)−1XT X are the columns of V we get the following,

α̂ j = s jVj,

β̂ j = s j
D2

j j

D2
j j +λ

Vj,

where s j = 1 or −1 and j = 1, . . . ,k.

Theorem (2) and (3) effectively transform the PCA problem to a regression problem. If we restrict

B = A then the minimizer of ||xi−AAT xi||2 under the orthonormal constraint on A is exactly the first

k loading vectors of ordinary PCA. Theorem (3) shows that we can have exact PCA while relaxing

the restriction B = A. and adding the ridge penalty term.

Adding LASSO penalty to (4) and considering the following optimization problem,

(Â, B̂) = arg min
A,B

n

∑
i=1

||xi −ABT xi||2 +λ

k

∑
i=1

||β j||2 +
k

∑
j=1

λ1, j||β j||1 (6)

subject to AT A = I.

We can carry on the connection between PCA and regression using the LASSO approach to produce

sparse loading. Here same λ is used for all the k components and different λ ′
1, js are used for penal-
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3.3 Numerical Solution 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

ization. For p > n a positive λ is required to get exact PCA when the sparsity constraint vanishes i.e.

when λ1, j = 0,∀ j. (6) is referred to as the SPCA criterion hereafter.

3.3 Numerical Solution

We will follow the alternative minimization algorithm for SPCA criterion proposed by Zou et al.

(2006).

From the proof of theorem (3), we get,

n

∑
i=1

|x−ABT xi|2 +λ

p

∑
j=1

|β j|2 +
p

∑
j=1

λ1, j|β j|1

= Tr(XT X)+
p

∑
j=1

(
β

T
j (X

T X+λ I)β j −2α
T
j XT Xβ j +λ1, j|β j|1

)
(7)

Clearly, if A is known, it is equivalent to solving k independent elastic net problems to get β̂ j for

j = 1,2, . . . ,k. Further, if B is fixed, we can re-write the SPCA objective function as:

n

∑
i=1

|x−ABT xi|2 +λ

p

∑
j=1

|β j|2 +
p

∑
j=1

λ1, j|β j|1

= Tr(XT X)−Tr(AT (XT X)B)+Tr(BT (XT X+λ I)B)+
k

∑
j=1

λ1, j|β j|1 (8)

It is clear that given B, and subject to AT A = Ip, to get estimate of A, we need to maximize

Tr(AT (XT X)B). The following theorem provides a solution for the maximization problem.

Theorem 4. Let Am×k and Bm×k be two matrices, with B being of rank k. Consider the constrained

minimization problem:

Â = argmin
A

Tr(AT B) subject to AT A = Ik×k. (9)

Suppose the SVD of B is UDVT , then Â = UVT .
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3.3 Numerical Solution 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

Proof. By our assumption, B = UDVT with UT U = Ik and VVT = VT V = Ik. The constraint AT A =

Ik consists of k(k+1)/2 constraints, which are of the form:

α
T
i αi = 1, i = 1,2, . . . ,k

α
T
i αi = 0, j > i

We thereon use the Lagrangian multipliers method. We define,

L =−
k

∑
i=1

β
T
i αi +

T

∑
i=1

1
2

λi,i(αiαi −1)+
k

∑
j>1

λi, j(α
T
i αi)

Clearly, ∂L /∂αi = 0 gives βi = λi,iα̂i +λi, jα̂ j; This can be re-written in matrix form as B = Â∆,

where ∆i, j = λ j,i. Both B and A are of full rank, thus ∆ is invertible and A = B∆−1. Thus we have,

Tr(ÂT B) = Tr(∆−1BT B) = Tr(∆−1,T VD2VT )

Ik = ÂT Â = ∆
−1,T BT B∆

−1 = ∆
−1,T VD2VT

∆
−1

Let us set P = VT ∆−1V, we then observe the following:

Tr(∆−1VD2VT ) = Tr(VT
∆
−1VD2) = Tr(PT D2) =

k

∑
j=1

Pj jD2
j j

PT D2P = Ik

Now, P2
j jD2

j j ≤ 1, thus,∑k
j=1 Pj jD2

j j ≤ ∑
k
j=1 D j j.

The equality occurs if and only if P is a diagonal matrix and Pj j = D−1
j j .

Therefore, ∆−1 = VPVT = VD−1VT . Then, A = B∆ = UDVT VD−1VT = UVT .
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3.3 Numerical Solution 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

Let Y ∗
j = Xα j. In order to solve (7), we would only require the Gram matrix XT X, since,

||Y ∗
j −Xβ j||2 +λ ||β j||2 +λ1, j||β j||1 = (α j −β j)

T XT X(α j −β j)+λ ||β j||2 +λ1, j||β j||1 (10)

The same is also true for (8).

n−1XT X is the sample covariance matrix of X. Thus, we can replace n−1XT X with Σ, the co-

variance matrix of X if Σ is known, in (10) and thereby have the population version of SPCA. If X

is standardized beforehand, then we use the sample correlation matrix which is preferable when the

scales of variables are different.

It is important to note that replacing Σ in place of XT X in (10) is not an elastic net problem. We can

however turn it into one. We create an artificial response Y ∗∗ and X∗∗ as follows:

Y ∗∗ = Σ
1/2

α j X∗∗ = Σ
1/2; (11)

then it is easy to show that

β̂ j = argmin
β

||Y ∗∗−X∗∗
β ||2 +λ ||β ||2 +λ1, j||β ||1. (12)

The following algorithm summarizes our discussion.
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3.4 Adjusted Total Variance 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

Algorithm 1 General SPCA Algorithm

1. Let A start at V[,1 : k], the loadings of the first k ordinary principal components.

2. Given a fixed A = [α1, . . . ,αk], solve the following elastic net problem for j = 1, . . . ,k

β j = argmin
β

(α j −β )T XT X(α j −β )+λ ||β ||2 +λ1, j||β ||1

3. For a fixed B = [β1, . . . ,βk], compute the SVD of XT XB = UDVT , then update A = UVT .

4. Repeat steps 2-3 until convergence.

5. Normalization: V̂j = β j/||β j||, j = 1, . . . ,k.

It must be noted that for n > p, the default choice of λ can be zero. Empirical evidence suggests that

the output of the above algorithm does not change much as λ is varied. λ is however chosen to be

small positive number to overcome potential collinearity problems in X.

In principle, since the above algorithm converges quite fast, we can try several combinations of {λ1, j}

to figure out a good choice of the tuning parameters. We choose a λ1, j which gives a good compromise

between variance and sparsity. However, when we face a variance-sparsity trade-off, we let variance

have a higher priority.

3.4 Adjusted Total Variance

The ordinary principal components are uncorrelated and their loadings orthogonal. Let Σ̂ = XT X,

then VT V = Ik and VT Σ̂V is diagonal. It is clear that only the loadings for ordinary principle com-

ponents satisfy these conditions. In Jolliffe et al. (2003), the loadings were forced to be orthogonal

which came at the sacrifice of the uncorrelated property. SPCA also does not explicitly impose the

14



3.4 Adjusted Total Variance 3 SPARSE PRINCIPAL COMPONENT ANALYSIS (SPCA)

uncorrelated components condition either.

Let Ẑ be the modified PCs. Usually the total variance explained by Ẑ is calculated by Tr(ẐT Ẑ).

This is a reasonable process when Ẑ are uncorrelated. However, if they are indeed correlated, then

Tr(ẐT Ẑ) is too optimistic for representing the total variance. Suppose (Ẑi, i = 1, . . . ,k) are the first

k modified PCs any method and the (k+1)th modified Ẑk+1 is obtained and we want to compute the

total variance explained by the first k+ 1 modified PCs, which should be the sum of the explained

variances by the first k modified PCs and the additional variance from Ẑk+1. If Ẑk+1 is correlated with

(Ẑi, i = 1, . . . ,k), then its variance contains contributions from (Ẑi, i = 1, . . . ,k), which should not be

included into the total variance given the presence of (Ẑi, i = 1, . . . ,k).

Zou et al. (2006) proposes a new formula to compute the total variance explained by Ẑ, which takes

into account the correlations among Ẑ. Using regression projections, we remove the linear depen-

dence between the correlated components. Denote Ẑ j·1,..., j−1 the residuals after adjusting Ẑ j for

Ẑ1, . . . , Ẑ j−1, i.e.

Ẑ j·1,..., j−1 = Ẑ j −H1,..., j−1Ẑ j, (13)

where H1,..., j−1 is the projection matrix on Ẑ j−1
1 . Then the adjusted variance of Ẑ j is ||Ẑ j·1,..., j−1||2,

and the total total variance is defined ∑
k
j=1 ||Ẑ j·1,..., j−1||2. When the modified PCs Ẑ are uncorrelated,

the new formula agrees with Tr(ẐT Ẑ).

The above computations do depend on the order of Ẑi. However, since we have a natural ordering in

PCA, the ordering does not create any issue. Using the QR decomposition, it is easy to compute the

adjusted variance. Suppose Ẑ = QR, where Q is orthonormal and R is upper triangular. Then,

||Ẑ j·1,..., j−1||2 = R2
j j. (14)

Hence the explained total variance is equal to ∑
k
j=1 R2

j j.
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3.5 Computational Complexity 4 GAS-PCA

3.5 Computational Complexity

PCA is computationally efficient for both n > p and p ≫ n data. We discuss the computational cost

of general SPCA algorithm.

1. When n > p:

This type of data is where the traditional techniques work quite well. Although the SPCA

criterion is defined using X, it only depends on X via XT X. We need to compute Σ̂ = XT X

which requires np2 operations. Then the same Σ̂ is used at each step within the loop. Computing

XT Xβ costs p2k and the SVD of XT Xβ is of order O(pk2). Each elastic net operation requires

at most O(p3) operations. Since k ≤ p, the total computation cost is at most np2 +mO(p3),

where m is the number of iterations before convergence. Thus. SPCA algorithm is able to

efficiently handle data with huge n, as long as p is small.

2. When p ≫ n:

The method of calculating Σ̂ stated above is no longer applicable, owing it to be a huge matrix

of order p× p. The most consuming step is solving the elastic net, whose cost is of the order

O(pnJ+J3) for a positive finite λ , where J is the number of non-zero coefficients. The overall

cost is of the order mkO(pKn+ J2), which can be expensive for large J and p.

4 GAS-PCA

When the number of responses, n, is considerably larger than the dimensionality, d i.e. n >> d,

Zou (2006) show that the excessive shrinkage equally applied by lasso to each coefficient tend to

be problematic, at least in the least-squares setting. So, they proposed Adaptive LASSO, wherein

different shrinkage are used for different coefficients. This leads to a consistent variable selection

with high efficiency because intuitively we are using more shrinkage for the zero coefficients with

less shrinkage for the nonzero ones.
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4 GAS-PCA

Motivated by Adaptive LASSO, Leng and Wang (2009) generalizes SPCA in two ways:

1. The lasso penalty in (6) is replaced by an adaptive lasso penalty;

2. The least-squares problem is expanded to a generalized least-squares problem.

So, based on the above two factors, Generalized Adaptive Sparse Principal Components Analysis

(GAS-PCA, Leng and Wang (2009)) involves minimizing the following objective function, given a

fixed matrix A:

d0

∑
j=1

{
(α j −β j)

′
Ω̃(α j −β j)+

d

∑
k=1

λ jk|β jk|
}
, (15)

where Ω̃ is a positive definite matrix with a probabilistic limit Ω, a positive definite matrix, referred

to as the kernel matrix. Once β j is estimated, α j can be updated like in Zou et al. (2006). We iterate

these two steps until convergence. The BIC criterion associated with this method is given by:

BICλ j = (α j −β j)
′
Ω̃(α j −β j)+d fλ j ×

logn
n

. (16)

Here d fλ j is the number of nonzero coefficients identified in β̂λ j.

Choice of Kernel Matrix Ω̃:

According to Leng and Wang (2009), the choice of the kernel matrix Ω̃ plays an important role in the

finite sample performance. Wang and Leng (2007) proposed a method of least-squares approximation

(LSA), where they found that the estimator produced by minimizing the following least-squares-type

objective function:

(θ̂ −θ)′ ˆcov−1(θ̂)(θ̂ −θ) +
d

∑
k=1

λk|θk|, (17)

possesses excellent finite sample and asymptotic properties, where θ = (θ1, . . . ,θd) ∈ Rd is some

unknown parameter, θ̂ is its unpenalized estimator (e.g. the maximum likelihood estimator) and
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ĉov(θ̂) is an estimator of cov(θ̂). The GAS-PCA formulation in (15) is similar to that of LSA in

(17). In particular, if we replace the unpenalized estimator θ̂ in (17) by the unpenalized eigenvector

estimate β̃ j , we can replace Ω̃ by cov−1(β̃ j). For cov−1(β̃ j), however, no simple formula exists. So,

Leng and Wang (2009) propose a bootstrap approach to estimate it. For given Σ̃, they apply PCA to

bootstrap samples from N (0, Σ̃) to produce a sufficient number of bootstrap estimates, β̂ boot
J for β j .

A natural estimate of ĉov(β̃ j) is the sample covariance of β̂ boot
j , denoted by Ĉ j, say. Finally, following

Leng and Wang (2009), they fix Ω̃ = Ĉ j. This approach is referred to as GAS-PCA. The resulting

GAS-PCA estimator is given by: B̂∗
λ
=
(

β̂ ∗
λ j, . . . , β̂λd0

)∗
.

4.1 Asymptotic Properties of GAS-PCA

In this section, we discuss certain consistency results. For that purpose, we first define a few notations.

We define the maximum shrinkage, an, applied to the significant coefficients as:

an = {λ jk : β jk ̸= 0 : 1 ≤ j ≤ d0,1 ≤ k ≤ d},

and the minimum shrinkage, bn, for the insignificant ones as:

bn = {λ jk : β jk = 0 : 1 ≤ j ≤ d0,1 ≤ k ≤ d}.

For the ease of understanding, we fix α̂λ j to be fixed at ᾱ j ∈ Rd . We further define

β̄λ j = argmin
β j

{(ᾱ j −β j)
′
Ω̃(ᾱ j −β j)+

d

∑
k=1

λ jk|β jk|}, (18)

where the tuning parameters are assumed to be selected according to BIC in (16). Note that (18)

defines one iteration step but with a fixed ᾱ j value. For example, for the initial step, ᾱ j is usually

set to be the jth principal component (i.e., β̃ j), and then iteratively updated according to (18). An

18
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examination of this process can be helpful in understanding the asymptotic behavior of the fully

iterated estimator. Finally, we define the set of nonzero coefficients in β j as s j = {1 ≤ k ≤ d : β jk ̸= 0}

and the set of nonzero coefficients identified by β̄λ j as ŝBIC
j = {1 ≤ k ≤ d : β̄λ jk ̸= 0}. The BIC

criterion in (16) is used to tune the tuning parameters.

Theorem 5. Assume that ᾱ j −β j = Op(n−1/2) and that Ω̃ converges in probability to some positive

definite matrix Ω,
√

nan → 0, and
√

nbn → ∞. We have:

1. ¯βλ j −β j = Op(n−1/2)

2. P(β̄λ jk = 0)→ 1 for every β jk = 0.

The above theorem can be interpreted as follows:

As long as ᾱ j is
√

n consistent,
√

nan → 0 and
√

nbn → 0, the resulting estimator β̄λ j is
√

n-consistent,

and all sparse loadings can be identified consistently.

Theorem 6. Assume that ᾱ j −β j = Op(n−1/2) and that Ω̃ converges in probability to some positive

definite matrix Ω. We have:

P(ŝBIC
j = s j)→ 1.

The above theorem can be interpreted as follows:

As long as the BIC criterion (16) is used in either local or global form, the true model is guaranteed

to be identified consistently.

The proofs of these two theorems follow arguments similar to those in Wang and Leng (2007) and so,

are omitted here.

4.2 Optimal Choice of the Kernel Matrix, Ω̃

The choice of the kernel matrix does not matter asymptotically as long as it converges to a positive

definite matrix, based on Theorems (5) and (6). In this section, we theoretically justify choosing
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Ω = cov−1(β̃ j). We compare the asymptotic efficiency of β̄λ j by fixing αλ j = β̃ j (i.e. the one step

estimator). We show that the one-step estimator with Ω = cov−1(β̃ j) has the “smallest” asymptotic

covariance. If the one-step estimator with Ω = cov−1(β̃ j) is asymptotically efficient, it is reasonable

to expect that its fully iterated version performs better than the estimators defined by other kernel

matrices.

We first partition β j into two parts as β j = (β ′
j,a,β

′
j,b)

′ with β j,a = {β jk : β jk ̸= 0} and β j,b = {β jk :

β jk = 0}. Similarly, we partition the kernel matrix Ω as

Ω =

Ωaa Ωab

Ωba Ωbb

 ,

and the C j = cov(β̃ j) as

C j

C j,aa C j,ab

C j,ba C j,bb

 .

We denote the estimator that minimizes (15) with a general matrix Ω̃. Under the conditions that
√

nan → 0 and
√

nbn → 0, we know by Theorem (6) that P(β̂λ j,b = 0)→ 1. Further, from Wang and

Leng (2007) (equations (A5) and (A6), p. 1047), we know that

β̂
Ω̃

λ j,a −β j,a = (β̃ j,a −β j,a)+Ω
−1
aa Ωabβ̃ j,b +oP(n−1/2). (19)

On the other hand, if we fix Ω̃ = Ĉ−1
j , Wang and Leng (2007) have verified that

β̂
∗
λ j,a −β j,a = (β̃ j,a −β j,a)+C j,abC−1

j,bbβ̃ j,b +oP(n−1/2). (20)

20



4.2 Optimal Choice of the Kernel Matrix, Ω̃ 4 GAS-PCA

Some algebraic manipulation yields

cov(β̂ Ω̃

λ j,a −β j,a) = cov(β̂ ∗
λ j,a −β j,a)+ cov(β̂ ∗

λ j,a − β̂
Ω̃

λ j,a)

−cov(β̂ ∗
λ j,a −β j,a, β̂

∗
λ j,a − β̂

Ω̃

λ j,a)

−cov(β̂ ∗
λ j,a − β̂

Ω̃

λ j,a, β̂
∗
λ j,a −β j,a).

(21)

Because β̂ ∗
λ j,a − β̂ Ω̃

λ j,a = OP(n−1/2) and also by (20), we know that

−cov(β̂ ∗
λ j,a −β j,a, β̂

∗
λ j,a − β̂

Ω̃

λ j,a)

=−cov((β̃ j,a −β j,a)−C j,abC−1
j,bbβ̃b, β̂

∗
λ j,a − β̂

Ω̃

λ j,a)+oP(n−1).

Similarly, by (19)-(20), we have

cov((β̃ j,a −β j,a)−C j,abC−1
j,bbβ̃b, β̂

∗
λ j,a − β̂

Ω̃

λ j,a)+oP(n−1)

= cov((β̃ j,a −β j,a)−C j,abC−1
j,bbβ̃b,(C j,abC−1

j,bb +Ω
−1
aa Ωab)β̃b)+oP(n−1)

=
(

cov(β̃ j,a −β j,a, β̃b)−C j,abC−1
j,bbcov(β̃ j,b, β̃ j,b)

)
×(C j,abC−1

j,bb +Ω
−1
aa Ωab)

′+oP(n−1)

= (C j,ab −C j,abC−1
j,bbC j,bb)(C j,abC−1

j,bb +Ω
−1
aa Ωab)

′+oP(n−1) = oP(n−1).

The fourth term in (21) is oP(n−1). Thus, the following theorem holds true.

Theorem 7. Assume that Ω̃ converges in probability to some positive definite matrix Ω,
√

nan → 0,

and
√

nbn → ∞. We have cov(β̂ Ω̃ −β j,a) = cov(β̂ ∗
λ j,a −β j,a)+ cov(β̂ ∗

λ j,a − β̂ Ω̃

λ j,a)+oP(n−1).

The matrix cov(β̂ ∗
λ j,a − β̂ Ω̃

λ j,a) is positive semi-definite. Thus, Theorem (7) implies that the optimal

asymptotic efficiency of β̂λ j is achieved when Ω̃ = C̃−1
j . This justifies the use of Ω = cov−1(β̃ j) =
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C−1
j . Furthermore, by (20), one can verify that

cov(β̂ ∗
λ ,a −β j,a) =C j,aa −C j,abC−1

j,bbC j,ba +oP(n−1).

Since C j,abC−1
j,bbC j,ba is positive semi-definite, (4.2) implies that the estimator in (15) with the optimal

kernel matrix estimates the nonzero coefficients more efficiently than the unpenalized estimator.

5 Examples

In this section we compare the performance of SPCA and GAS-SPCA on simulated and real data.

We simulate a synthetic data such that there are 3 hidden factors generating the explanatory variables.

We wish to see if SPCA and GAS-SPCA can capture these hidden factors using sparse principal

components. In real data analysis, we consider two datasets - Pitprops data and teaching data. We use

the first data to illustrate the advantage of introducing sparsity in PCs through use of SPCA. We use

the second dataset to compare the performance of SPCA and GAS-SPCA.

5.1 Synthetic Data Analysis

Following, Zou et al. (2006), we first created three hidden factors

V1 ∼ N(0,290), V2 ∼ N(0,300)

V3 =−0.3V1 +0.925V2 + ε, ε ∼ N(0,1)

V1,V2 and ε are independent.

Then 10 observed variables were generated as the follows

Xi =V1 + ε
1
i , ε

1
i ∼ N(0,1), i = 1,2,3,4,
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Xi =V2 + ε
2
i , ε

2
i ∼ N(0,1), i = 5,6,7,8,

Xi =V3 + ε
3
i , ε

3
i ∼ N(0,1), i = 9,10,

Note that the variance of the three underlying factors is 290, 300 and 283.8, respectively and the

numbers of variables associated with the three factors are 4, 4 and 2. The first three PCs together

explain 96% of the total variance. These facts suggest that we only need to consider three PCs with

sparse representations. As noted by Zou et al. (2006), ideally, the first derived variable should recover

the factor V2 only using (X5,X6,X7,X8), second derived variable should recover the factor V1 only

using (X1,X2,X3,X4) and third derived variable should recover the factor V3 only using (X9,X10)

Table (1) summarises the results. We see that both SPCA and GAS-SPCA are able to identify the the

three hidden factors correctly through the first three principal components.

Table 1: Simulation Results

PCA SPCA GAS-SPCA

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

1 -0.351 0.356 -0.002 0 0.499 0 0 0.500 0
2 -0.351 0.357 -0.001 0 0.500 0 0 0.500 0
3 -0.351 0.357 -0.002 0 0.500 0 0 0.500 0
4 -0.351 0.356 -0.001 0 0.501 0 0 0.500 0
5 0.356 0.351 0.003 0.499 0 0 0.500 0 0
6 0.356 0.351 0.003 0.500 0 0 0.500 0 0
7 0.356 0.351 0.003 0.500 0 0 0.500 0 0
8 0.357 0.351 0.003 0.500 0 0 0.500 0 0
9 -0.005 -0.002 0.707 0 0 0.707 0 0 0.707

10 -0.005 -0.001 0.707 0 0 0.707 0 0 0.707

But it can also be seen that the variance of V1, V2 and V3 is very high and both the methods might

be giving optimistic results due to such high variance of the hidden factors. Therefore, we decide to

simulate the data again but with very low variance of the first two hidden factors as follows -

V1 ∼ N(0,0.2), V2 ∼ N(0,0.3)
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Table 2: Simulation results under modified setup

PCA SPCA GAS-SPCA

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

1 0.003 0.048 -0.494 0 0 0 0 0 0.501
2 0.003 0.048 -0.497 0 0 0 0 0 0.503
3 0.005 0.047 -0.498 0 0 0 0 0 0.496
4 -0.007 0.046 -0.501 0 0 0 0 0 0.500
5 0.501 0.029 0.004 0 0 0 0 0.494 0
6 0.497 0.035 -0.001 0 0 0 0 0.503 0
7 0.499 0.030 0.004 0 0 0 0 0.498 0
8 0.499 0.028 0.008 0 0 0 0 0.506 0
9 -0.045 0.702 0.069 0 0 0 0.706 0 0

10 -0.042 0.703 0.064 -1 0 0 0.708 0 0

V3 =−0.3V1 +0.925V2 + ε, ε ∼ N(0,1)

V1,V2 and ε are independent.

Table (2) summarises the results. We now see that only GAS-SPCA is able to identify the the three

hidden factors correctly through the first three principal components. Therefore, it can be observed

from our simulation study that both SPCA and GAS-SPCA perform well and fulfil their purpose.

However, GAS-SPCA outperforms SPCA when the variance of hidden factors is low.

5.2 Real Data Analysis

5.2.1 Pitprops Data

The pitprops data first introduced in Jeffers (1967) has 180 observations and 13 measured variables.

It is the classic example for showing the difficulty of interpreting principal components. Following

Jeffers (1967) we tried to interpret the first 6 PCs and compare it with 6 PCs found using SPCA.

Table (3) and Table (4) summarize the results. We see that SPCA makes interpretation of the vari-

able clearer through sparsity. Furthermore, the important variables associated with the 6 PCs do not
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overlap, which further makes the interpretations easier.

Table 3: PCA (Pitprops Data)

Variable PC1 PC2 PC3 PC4 PC5 PC6

topdiam -0.404 -0.218 0.207 -0.091 0.083 0.120
length -0.406 -0.186 0.235 -0.103 0.113 0.163
moist -0.124 -0.541 -0.141 0.078 -0.350 -0.276
testsg -0.173 -0.456 -0.352 0.055 -0.356 -0.054

ovensg -0.057 0.170 -0.481 0.049 -0.176 0.626
ringtop -0.284 0.014 -0.475 -0.063 0.316 0.052
ringbut -0.400 0.190 -0.253 -0.065 0.215 0.003

bowmax -0.294 0.189 0.243 0.286 -0.185 -0.055
bowdist -0.357 -0.017 0.208 0.097 0.106 0.034
whorls -0.379 0.248 0.119 -0.205 -0.156 -0.173
clear 0.011 -0.205 0.070 0.804 0.343 0.175
knots 0.115 -0.343 -0.092 -0.301 0.600 -0.170

diaknot 0.113 -0.309 0.326 -0.303 -0.080 0.626

Table 4: SPCA (Pitprops Data)

Variable PC1 PC2 PC3 PC4 PC5 PC6

topdiam -0.477 0 0 0 0 0
length -0.476 0 0 0 0 0
moist 0 0.785 0 0 0 0
testsg 0 0.619 0 0 0 0

ovensg 0.177 0 0.641 0 0 0
ringtop 0 0 0.589 0 0 0
ringbut -0.250 0 0.492 0 0 0

bowmax -0.344 -0.021 0 0 0 0
bowdist -0.416 0 0 0 0 0
whorls -0.400 0 0 0 0 0
clear 0 0 0 -1 0 0
knots 0 0.013 0 0 -1 0

diaknot 0 0 -0.016 0 0 1
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5.2.2 Teaching Data

Following Leng and Wang (2009), we consider the Teaching dataset which is about the teaching

evaluation scores of 251 courses taught in the Guanghua School of Management, Peking University.

Each observation corresponds to one course taught during the period from 2002 to 2004, and records

the average scores on the students’ agreement with the following nine statements: (Q1) I think this is

a good course; (Q2) The course improves my knowledge; (Q3) The schedule is reasonable; (Q4) The

course is difficult; (Q5) The course pace is too fast; (Q6) The course load is very heavy; (Q7) The text

book is good; (Q8) The reference book is helpful; (Q9) Opening this course is necessary.

From table (5), it can be seen that both SPCA and GAS-PCA identified similar interpretable patterns.

Specifically, PC2 in SPCA and GAS-SPCA suggests that the items Q4, Q5, and Q6 are related to each

other. It can be seen from the description of variables that those three items are the only questions

asked in a negative manner. For example, Q4 asks students whether they agree that the course is dif-

ficult instead of asking students if they think the course is easy. Similar comments are also applicable

to Q5 and Q6. We also notice that Q7 and Q8 are the only two items having negative loadings in

PC3. Furthermore, the loading patterns of other items in PC3 are similar to those of PC1 for SPCA

and GAS-PCA. This observation suggest that Q1, Q2, Q3, and Q9 are likely to be accounted for by

one common hidden factor whereas Q7 and Q8 are due to some other factors. From the description of

variables we find that Q7 and Q8 are the only two items about teaching materials, whereas all other

items are general questions about the course itself. In conclusion, we observe that both SPCA and

GAS-SPCA perform well on the teaching data and give similar interpretable results.
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Table 5: Comparison of methods on Teaching Data

PCA SPCA GAS-SPCA

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Q 1 -0.390 -0.221 0.247 0.487 0 0.323 0.483 0 0.320

Q 2 -0.383 -0.136 0.294 0.346 0 0.338 0.376 0 0.331

Q 3 -0.339 -0.221 0.301 0.347 0 0.308 0.328 0 0.224

Q 4 -0.283 0.493 -0.099 0 0.619 0 0.110 0.643 0

Q 5 -0.268 0.503 -0.053 0 0.559 0 0 0.515 0

Q 6 -0.258 0.515 -0.012 0 0.552 0 0 0.567 0

Q 7 -0.322 -0.242 -0.686 0.502 0 -0.636 0.458 0 -0.658

Q 8 -0.330 -0.229 -0.455 0.399 0 -0.430 0.394 0 -0.468

Q 9 -0.394 -0.103 0.269 0.333 0 0.311 0.375 0 0.291

6 Conclusion

All the discussions regarding improvements over PCA have given us clear understanding that, SPCA

and GAS-PCA facilitates us to interpret the PCs more efficiently as they include only the relevant

variable for the construction of PCs by providing sparse loadings. Also, they appear to be more useful

and computationally efficient for high-dimensional cases. In this report, we have also discussed how

GAS-PCA can be obtained from SPCA by using adaptive lasso penalty instead on lasso penalty.

In the cases when the variability of the hidden factor is low, GAS-PCA performed more accurately

than SPCA. Hence, this report presented a comparative study between general PCA and PCA after
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inclusion of sparsity, as well as between two different methods of obtaining sparse loadings. For more

extensive theoretical developments of SPCA and its applications, we refer the interested readers to

Guerra-Urzola et al. (2021), Luss and d’Aspremont (2010), Cai et al. (2013), Hubert et al. (2016).

7 Supplementary Material

The interested reader is directed to https://github.com/ArkaB-DS/SPCA, which contains all the R

codes and datasets used in this report.
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