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Formulation of the Problem

° Data: (y,',Z;)/,(y27Z/2)/,...(yn,2/,7)/
® (y1,2}) " H, let x; = (1,z)) € RP, and the model is,

@ Ideal Situation: y; and z; are independently distributed for all i.
i~ Fo,zj ~ Go, (¥i,2;) ~ Ho.

@ He stz ={H=(1—-¢)Hy+¢eH*} ,where H* is an arbitrary and
unspecified functionand 0 < e < 1/2.
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MM-Estimation

@ We consider MM-estimation which is based on two loss functions pg and
p1, say.
e If B, is the MM-estimate of f8, then it satisfies the following equations,

18 (Vi —x,-’ﬁn>

— ~ xi=0 2

S Lo (25 ) @
@ 6, is scale S-estimate which minimizes the following equation,

sk ey ) - <3>

:1

° E,, is the associated S-regression estimate.
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Fast Bootstrap

@ 3, can be represented as a solution of fixed point equations:

Bn = fa(Bn)

@ Here f, depends on the observed data {(y;,x;),i=1,...,n} and for given
data f, is given by,

[fmmx}qi XY @

i=1

W,-(ﬁn) p‘(r’/a") , Where r; = —ﬁ,i,x,-.

@ Given a bootstrap sample {(y;,x;),i =1,...,n} the recalculated
estimates f32 solves, B2 = f:(Bb).
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Fast Bootstrap

@ f; has the same form of f;,, except it is based on the bootstrap samples
and the corresponding weights are, given by,
o p/ rb/6
(Be) = L1UL/%n)

wW:

b_ . x  p'byx
; , where r’ =y —B.°x;.

i

e Instead of computing 32 we consider, B = f:(f,), i.e. in f; we use the
weights as,

NAGIED

* * s
P , Where ri' =y — Bpx;'.
]

@ It can be shown that 6, has a weighted average representation and so it
is possible to define 6, for the bootstrap samples similarly.

° ﬁ;; may not reflect true variability of /3,,, on applying correction factor our
final estimate is:

Arﬁ* ~pBn= Mn(ﬁﬁ - 3n) + dn(65, — 6n)
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Asymptotic Properties of Fast Bootstrap

@ Now that we have put the forward the methodology, we focus on the
asymptotic properties of Fast bootstrap estimates.

@ The next theorem will show that the asymptotic distribution of fast
bootstrap is the same as that of MM-regression estimator.

@ We proceed with stating a few regularity conditions on the form of py and
pq defined earlier.
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Some conditions

MM-estimates are based on two loss function pp: R — R, and p; : R — R,
(defined earlier) which determine the breakdown point and the efficiency of
the estimate. They satisfy the following conditions:

C1 VueR, po(—u) = po(u) and p;(u) = p1(-u);

C2 po(0) =0=p1(0);

C3 po and pq are continuously differentiable functions;
C4 supy po(X) = supy p1(x) = 1;

C5 If pg(u) <1 and 0 < v < u, then pg(v) < po(u). Same condition holds for
p1-
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Some established results

Salibian-Barrera and Zamar (2002) proved that that B (MM-regression
estimator), 6, (S-scale estimator) and 3, (S-regression estimator) are
consistent (weakly) for true values 3, o, & B where,

E[p} (Y - X'B)/0)] = 0

Elpo((Y - X'B)/0)] = b

Elpp((Y ~ X')/0)] =0

This result is essential in stating the first main theorem of this topic.

10/22



Convergence of Fast Robust Distribution

Theorem

If pg and p1 satisfies the conditions (C1-C5) and have continuous third order
derivatives, then given the consistency of [3,,, 6, and B and under a few
regularity conditions, almost all sample sequences +/n( [?,, *— [§,,) converges
weakly, as n goes to infinity, to the same limit distribution as /n(f»— B).
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Robustness of Fast Bootstrap

@ We now focus on the robustness properties of our fast bootstrap.
@ Let g; be the t*" upper quantile of a statistics 6, i.e. g; satisfies

Pl6,> qi] =t

@ Singh (1998) defines upper breakdown point of a quantile estimate §; as
the minimum proportion of asymmetric contamination that can drive it
over any finite bound.

@ An estimator based on bootstrap sample can potentially break down if the
expected proportion of bootstrap samples that contain more outliers than
the breakdown point of the estimate (say 7*) to be more than t.

12/22



Breakdown point of the fast bootstrap quantiles

Theorem

Let (y1,X,),...,(¥n xp) € RPH1 be the random sample following linear model.
Assume that the explanatory variables X1, ..., X in RP are in general position.
Let [3,, be an MM-regression estimate and let €* be its breakdown point. Then
the breakdown point of the t fast bootstrap quantile estimate of the
regression parameters B;, j=1,...,p is given by min(e*,eg), where ¢g
satisfies

eg=inf{6 €[0,1]: P[Binomial(n,d) > n—p| >t}

Singh (1998) obtained the upper breakdown point of bootstrap estimate g; of
Q::

ec=inf{6 €[0,1]: P[Binomial(n,d) > [e*n]] > t}

If n> 2p, then [e*n] < [n/2] < n— p. Thus we can clearly see that ¢ < eg.
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Simulation Study

Data Description
@ Generatedthedata y;=fo+B1xi+¢, i=1,...,nfor n=30 and 100.

@ x; ~ Normal(0,1), Bp =5 and 31 =5.

@ The errors are generated from F; with,
Fe(x)=(1—¢&)®(x)+eFu(x)

¢ is the CDF of Normal(0,1)andF,, is the CDF of Uniform(20,25)

@ Considered € =0.0,0.20, i.e. considered 0% and 20% contamination in
the error distribution.

@ Generated 1000 datasets from the above distribution and built 99%
confidence intervals for the parameters
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Robustness regression fits
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Numerical stability results

Comparison of coverage for n=30 and epsilon=02
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Computational cost results
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Data Analysis-|

1)Belgian International Phone Calls?
Using 10000 fast bootstrap calculations we estimate the distribution of robust
regression estimates and compare results with classical bootstrap method.

Belgian International phone calls dataset
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2Mass Package in R
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Data Analysis-ll

Comparison of length for Belgian international phone calls.

Belgian international phone calls
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Data Analysis-lI

2)Verbal test score data®
The data consist of verbal mean test scores from 20 schools.There are 5

explanatory variables.The plot of residuals below confirms presence of
outliers.

OLS regression

fesidual
0

3Coleman et. al (1966)
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Results on Verbal test score data
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