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1 Introduction

Proteins are one of the most important molecules in the living organisms so they play vital struc-
tural role in the cells of living organisms. They are constructed of several polypeptide chains of
amino acids, which fold into complex tertiary structure. The knowledge of the protein function is
directly dependent on its three dimensional (tertiary) structure.
In this project we focus on explaining the dependence of Root Mean Square Deviation which is
used as a quantitative measure of similarity between two or more protein structures on different
Psychochemical attributes related to a Critical Assessment of Techniques for Protein Structure
Prediction (CASP) experiment.
The main objective of the project is to properly explain protein’s tertiary structure which we have
taken as RMSD (Root Mean Square Deviation) by a linear model of 9 other components given as
F1, F2, F3, F4, F5, F6, F7, F8, F9 using different tools of regression analysis. We aim to model
the relationship between response and the regressors using an MLR model. Along with an empir-
ical evaluation, we will be performing a detailed mathematical analysis of different aspects of the
model to establish its validity. This includes Residual analysis to check if our model assumptions
hold true, tests for checking Multi-collinearity to check if there exists any near-linear relationship
among any subsets of the regressors, tests of significance to guarantee that the derived model
parameters do make sense, and also variable selection to see if we can get the same result as our
full model using only lesser number of regressors. To summarize, we are aiming to build a model
of RMSD by identifying the most important factors (or regressors) through the regression analysis
and model diagnostics.To have make analysis as exhaustive as our knowledge on regression can
permit, we are motivated to apply certain more tools of analysis which we will be covering over
time in the Regression Analysis (MTH416A) course.
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2 Data Description

This is a dataset of Physicochemical Properties of Protein Tertiary Structure. Data set is taken
from CASP 5-9. There are a total of 45730 decoys and size varying from 0 to 21 angstrom.
The variable of concern under the setup are listed as follows:

• RMSD- Size of the residue

• F1- Total Surface area

• F2- Non polar exposed area

• F3- Fractional area of exposed non polar residue

• F4- Fractional area of exposed non polar part of the residue

• F5- Molecular mass of weighted exposed area

• F6- Average deviation from standard exposed area of residue.

• F7- Euclidean distance

• F8- Secondary structure penalty

• F9- Spatial Distribution constraints (N, K- value)

The data is of available in the following form:

Figure 1: Glimpse of the dataset

2.1 Exploratory Analysis

Exploratory Data Analysis is an approach to summarize the main characteristics of the data set,
often with visual methods. The primary objective of this is to see what the data can tell us other
than formal modelling or hypothesis testing task.
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Figure 2: The pairs plot for all the variables under consideration

We observe the following:

• The response variable(RMSD) is positively skewed which indicates the presence of some
outliers.

• Among the regressors, except for F3 and F9, all the variables are positively skewed where
as F3 and F9 are almost symmetrically distributed.

• None of the individual regressor is found to be highly correlated with the response variable.

• However some of the pairs of regressors are supposed to be highly correlated viz

– F1 has high positive correlation with F2,F4,F5,F6,F8 and high negative correlation
with F9. Moreover F1 is perfectly correlated with F5 in a positive way.

– F2 is positively correlated with F4,F5,F6 and negatively correlated with F9.

– F4 has positive correlation with F5,F6,F8 and negative correlation with F9.

– (F5,F6),(F5,F8) pairs have positive correlation and (F5,F9) has negative correlation.

– F6 is positively correlated with F8 and negatively correlated with F9.

– And finally F8 and F9 share a negative correlation.
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3 Multiple Linear Regression

We assume that we are provided with n sets on observations on RMSD,F1, F2, ..., F9. Our multiple
linear model involves p = 9 regressors x1 = F1, ..., x9 = F9 and an intercept term. The response
variable being y=RMSD. The MLR model is:

yi = β0 +
n∑
j=1

βjxij + εi, ∀ i = 1, ..., n

Where, ε is the error term in the model, with the following assumptions:

E[εi] = 0, ∀i = 1(1)n

V ar[εi] = σ2, ∀i = 1(1)n

Cov[εi, εj] = 0, ∀i 6= j

3.1 Normal Equations

We can write the above stated MLR equations in the matrix form as follows:

Y = Xβ + ε

Where,

Y =

y1...
yn

 , X =


1 x11 x12 x13 . . . x1p
1 x21 x22 x23 . . . x2p
...

...
...

...
. . .

...
1 xn1 xn2 xn3 . . . xnp

 , β =


β0
β1
...
βp

 , ε =

ε1...
εn


We want to find the estimate of β from the given data. We will apply the least squares technique
to obtain the estimates. The technique involves minimizing the Sum of Squares of errors with
respect to β i.e. to minimize the following function:

S(β) =
n∑
i=1

ε2i = ε′ε = (Y −Xβ)′(Y −Xβ)

Differentiating the above equations with respect to β, we get the Least Squares Normal Equa-
tions of out MLR model, given as:

X ′Xβ = X ′Y

Thus the least squares estimates of out MLR model is given by:

β̂ = (X ′X)−1X ′Y

provided (X ′X)−1 exists.

3.2 Least Squares Estimates

The estimated values of the parameters obtained are as follows:

Figure 3: Least Squares estimates of Model parameters
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Thus the estimated model stands:

Y = 6.037 + 1.572× 10−3X1 + 1.429× 10−3X2 + 1.803× 101X3 − 1.082× 10−1X4

− 4.075× 10−6X5 − 2.388× 10−2X6 − 1.387× 10−4X7 + 1.485× 10−2X8 − 1.101× 10−1X9

3.3 Tests for significance of Regression

This test is performed to check whether atleast one of the regressors have linear relationship with
the response or not. The testing hypothesis is:

H0 : β1 = β2 = ... = βp = 0 vs HA : βi 6= 0 for some i ∈ {1, 2, ..., p}

We assume ε ∼ Nn(0, In).
We will be using the Analysis of Variance method to make a conclusion on the test. We make use
of the following results:

• SSTotal = SSreg + SSres

• SSreg/σ2 ∼ χ2
p where p is the number of regressors

• SSres/σ2 ∼ χ2
n−p−1

• SSreg and SSres are linearly independent

• Fstat = SSreg/p

SSres/(n−p−1) = MSreg

MSres
∼ Fp; n−p−1

The summary of the model is given as follows:

Figure 4: Summary of the Estimated MLR Model

We can clearly see that the p-values of all the parameter estimates i.e. β̂0, β̂1, ..., β̂9 are less than
0.05. Thus at 95% of significance we can conclude that all the paramater estimates are statistically
significant.
The ANOVA table is thus as follows:
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Source of Variation df SS MS Fstat
Regression 9 483256 53695.11 1998.2
Residual 45720 1228552 26.8712

Total 45729 1711807
We see that Fstat > F0.05; p,n−p−1. Thus we reject the null hypothesis in favour of the alternate
hypothesis and conclude that out linear regression line is significant.
R2 and Adjusted R2 are used to explain the overall adequacy of the model, where,

R2 = 1− SSRes
SSTot

R2
Adj = 1− SSres/(n− p− 1)

SSTot/(n− 1)

We also see that the value of Coefficient of Determination i.e. R2 turns out to be 0.2823. It implies
that about 28.23% of the variation in observed response variable i.e. RMSD is explained by the
assumed Multiple Linear Regression Model. The Model is thus not very efficient in explaining the
observed responses.

4 Model Diagnostics

Goodness of Fit indicators like R2, the χ2, t or F statistics are useful in testing model adequacy.
However, these measure do not shed light on whether the normal error assumptions are violated
or not.
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Figure 5: Plots on which we will base our analysis on

4.1 Residual Analysis

We already have our estimated model as:

Ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X3 + β̂4X4 + β̂5X5 + β̂6X6 + β̂7X7 + β̂8X8 + β̂9X9

which gives our estimated response values Ŷi, ∀i = 1(1)n.
Thus the residual is calculated by:

ε̂i = Yi − Ŷi, ∀i = 1(1)n

We will prepare a scatterplot of residuals (ε̂i) vs the fitted values (Ŷi). If a pattern is obvious, we
can conclude that error variance is non-constant indicating that the model is heteroscedastic.

Figure 6: Residual Plot for MLR model

We can clearly see that a distinct pattern is apparent. It indicates the presence of heteroscedas-
ticity, i.e., the errors vary with one or more regressors.
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Next we plot the residuals against each regressor to check if we can get an idea of the nature
of heteroscedasticity.

Figure 7: Plot for residual vs each regressor

We can see that there seems to be some form of dependence of residuals on the regressors. However
the nature of dependence on any of the regressors is not clear.
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4.2 Testing Normality of Error Assumption

1. Graphical Method: We first check the Q-Q plot for the standardized residuals.

Figure 8: Normal Q-Q plot for the MLR model

We can see that the data points do not lie entirely on the 45◦ diagonal line. Thus we can
suspect that the errors are actually not normally distributed.

2. Kolmogorov-Smirnov Test for Normality: We test the following hypothesis:

H0 : Errors are Normally Distributed ag. HA : H0 is not true

Figure 9: Summary of Kolmogorov-Smirnov Test

We get the value of the test statistic D = 0.075978 and the p-value as 2.2× 10−16 which is
smaller than 0.05 (testing at 95% level of significance). Thus we reject the null hypothesis in
favour of the alternate hypothesis and conclude that the errors are not normally distributed.
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4.3 Detection of Outliers

An outlier is an observation point that is distant from other observations. An outlier may be due
to variability in the measurement or due to experimental error.
We will try to identify outliers using standardized and studentized residuals.
Standardized residuals are given by:

di =
ε̂i√

MSRes
, ∀i = 1(1)n

where, ε̂i = Yi − Ŷi, ∀i and MSRes = (n − p − 1)−1
∑

i ε̂
2
i . A large value of di, say, |di| > 3

indicates possible outlier.

Figure 10: Plot for Standardized residual indicating points outside a limit

We can see that a substantial number of data points lie in regions which can indicate presence of
outliers.
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Studentized residuals are given by:

ri =
ε̂i√

MSRes
√

1− hii
, ∀i = 1(1)n

where, hii = (i, i)th element of X(X ′X)−1X ′. A large value of ri, say, |ri| > 3 indicates possible
outlier.

Figure 11: Plot for Studentized residual indicating points outside a limit

We can see that a few points can be believed to be possible outliers.
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4.4 Detection of Leverage Points

A leverage point is determined on the basis of location of the point on the x-space and hence
remote points impart more effect on the parameters of the model.
A point is considered to be a leverage point if:

hii > 2p/n

hii = (i, i)th element of X(X ′X)−1X ′, p is the total number of variables in our model (both
response and regressors).

Figure 12: Plot for checking leverages

As we can see, quite a many points apparent have large leverages.
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4.5 Detection of Influential points

We use Cook’s Distance or Cook’s D to estimate the influence of a data point.
Technically, Cook’s D is calculated by removing the ith data point from the model and recalculating
the regression. It summarizes the extent to which all the values in the regression model change
when the ith observation is removed. The formula for Cook’s distance is:

Di =

∑n
j=1(Ŷj − Ŷj(i))2

(p+ 1)s2

where, Ŷj(i) is the fitted response value obtained when excluding the ith regressor, and s2 is the
MSE.
Any point having Di > 4/n can be investigated to be an influential point and in this case we will
be considering them as such.

Figure 13: Plot for Cook’s Distance

We see that there are substantial number of points which can be regarded as influential points.

Since we are interested in finding the true nature of the dependence of response on the regressors,
we will drop these points.
We fit the MLR model again on this reduced set of data points. The residuals are noted.
We notice the histogram of the residuals:
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Figure 14: Residual Histogram for
MLR model on Original Dataset

Figure 15: Residual Histogram for
MLR model on Cleaned Dataset

We can see that data points with extreme influence has been removed, as is indicated by the
two histograms.
We will make our next analyses on this cleaned data set.
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5 Multicollinearity

Multicollinearity problem arises when the variance of the estimated parameters is too high. This
can lead to a huge change in the estimated parameter on addition or deletion of a data point.
To detect multicollinearity we first reframe our model.
Out MLR model is given by:

Yi = β0 +
n∑
i=1

βjxij + εi, ∀i = 1(1)n (1)

Where, xij is the value of jth standardized regressor Fj, i.e.,

xij =
Fij − F̄j
sd(Fj)

, ∀j = 1(1)p

The design matrix is X = ((xij)) of order n × p, n is the total number of observations in the
deleted model.

5.1 Prima Facie Detection

1. We can simply check the correlation matrix (related to the standardized regressors) to detect
whether there is some potential in our model to have multicollinearity.

Figure 16: Correlation Matrix
Yellow marked entries in the abive matrix indicate high values of pairwise correlation coefficient

We observe clealy that there are several entries in the matrix indicating very high value of
pairwise correlation coefficient and therefore we may have enough reason to believe that our
model contains multicollinearity.

2. We also check whether the matrix (X ′X)−1 is unstable or ill-conditioned or not.
We compute the eigen values of X ′X. The are given below:
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Figure 17: Eigen values of matrix X ′X

It is noted that the last two eigen values (0.01645 and 0.001176) are very close to 0 and they
might be responsible for the instability in the matrix (X ′X)−1.

3. We also note the determinant of the matrix X ′X given by:

|X ′X| =
9∏
i=1

{ith eigen value of X ′X} = 5.986286× 10−9

The determinant value is very close to 0 and hence is a near singular matrix.

4. The condition number of the matrix X ′X is given by:

Condition Number k =

√
max eigenvalue

min eigenvalue
=

√
6.6934

0.001176
= 75.4432

We can clearly see that the condition number is also very high, hinting towards potential
near-linear relationship among some subsets of regressors.

Conclusion from Prime Facie Multicollinearity Detection- We have shown that, the matrix
X ′X is near singular and ill-conditioned with a large condition number and also the pairwise
correlation matrix has some large entries.
Thus, we can observe that there are some reasons to believe prima facie that our model may be
affected by multicollinearity. So, we would perform further analysis on it to detect the regressors
which are mainly responsible for multicollinearity.
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5.2 Methodological Detection and Diagostics

5.2.1 Variance Inflation factor (VIF) and Variance Decompostion Method

VIF is calculated for parameters corresponding to each regresor. It provides us with an index
that measures the inflation in the variance of an estimated regression coefficient due to collinearity.
VIF is calculated as:

V IFj =
1

1−R2
j

, ∀j = 1, 2, .., p

where R2
j=Coefficient of Determination when xj is regressed with other regresors.

We calculate the VIF of all the 9 regressors and then we tend to drop the regressor having highest
VIF among those having VIF>5.

Figure 18: Yellow marked VIF’s are less than 5

VIF method indicates that there may exist multicollinearity in the model due to all regressors
except F7 and F8.
As VIF does not provide us the information that which subset of regressors are basically respon-
sible for multicollinearity we now go for Variance Decomposition Method.
We used Singular Value Decomposition of the input matrix X to calculate variance decomposition
of the estimated parameters along various singular values. The variance decomposition matrix π
is calculated as:

X = UDV T

((π))kj =
1
λk
v2kj∑p

k=1
1
λk
v2kj

, ∀k, j = 1(1)p

The Variance Decomposition of the original model (with all 9 regressors) is given as follows:

17



Figure 19: Yellow marked entries indicate πkj’s which are high

Observations and Steps

1. We observe from the above variance decomposition table that for rownumber 10, condition
index >15(i.e. for the row of condition number 75.4432>15) and corresponding that row
number 10 there are two regressors F1 and F5 which are forming a subset as they have
only larger (>0.5) variance decomposition proportions among all other regressors in that
row. Thus row 10 indicates that regressors F1 and F5 (corresponding to the standardized
regressors X1 and X5) may be involved in multicollinearity.
Similarly, we check that for F9, condition index=20.1687>15. And we observe that regressors
F2 and F3 might be involved in multicollinearity.

2. Now we got to subsets of regressors, (F1,F5) and (F1,F2). We observe,

• V IFF1 = 506.02 > V IFF5 = 362.4306, Hence we drop F5 from our model.

• V IFF2 = 40.64 > V IFF3 = 7.7823, Hence we drop F2 from our model.

From now on we would simultaneously look at VIF method and Variance Decomposition method
for tuning our model in order to eradicate multicollinearity from our model.
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Figure 20: VIF for model with 7 regressors (F3,F4,F5,F6,F7,F8,F9)
Yellow marked entries indicate VIF<5

We observe VIF>5 for the regressors F4, F5, F6 and F9. Therefore, by VIF method we may
say this model still has multicollinearity due to these regressors. For the detection of subset we
again check for Variance decomposition method.

Figure 21: Variance Decomposition of model with 7 regressors (F3,F4,F5,F6,F7,F8,F9)

Observation and Steps

1. We observe from the above variance decomposition table for 7 regressors that for row number
8, condition index= condition number=14.3706 <15 but corresponding to that row number
8 there are two regressors F5 and F6 which are forming a subset as they have only larger
(>0.5) variance decomposition proportions among all other regressors in that row. Thus
row 8 indicates that regressors F5 and F6 (corresponding to the standardized regressors X1
and X5) may be involved in multicollinearity. We consider them as potential candidates for
multicollinearity as VIF values for both of them >15.
It is to be noted that there are no such other rows with subset formation among regressors
in the above case of variance decomposition.

2. Now we got a group of regressors, namely(F5,F6)which are suspected to be involved in
multicollinearity. We observe:
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• V IFF6 = 26.47 > V IFF5 = 21.25, Hence drop F6 from our model.

Now, after dropping F6, our model becomes,

Y = β0 + β3X3 + β4X4 + β5X5 + β7X7 + β8X8 + β9X9 + ε

Now, at this stage, we could have stopped our procedure for multicollinearity diagnostics as the
variance decomposition method shows us that condition number of (X’X) (maximum condition
index) is less than 15.

Figure 22: Variance Decomposition for model with regressors (F3,F4,F5,F7,F8,F9)

But we observe carefully that variance decomposition proportions corresponding to the two
regressors F4 and F5 are very high so they are forming a group and are suspected to be involved
in multicollinearity. Not only that, VIF values are also very high corresponding to these two
regressors under this model.

Figure 23: VIF for model with regressors (F3,F4,F5,F7,F8,F9)

Also, the pairwise correlation coefficient between standardized regressors X4 and X5 (corre-
sponding to F4 and F5 respectively) is very high 0.936.
We observe that F5 can be well explained by F4 and hence our decision of dropping F5 is quite
justifiable.
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Figure 24: Summary table for simple linear regression F5 ∼ F4

Hence, we won’t ignore this issue; although the condition number=9.0867<15 (by theoretical
thumb rule we should have ignored the group formation and could have claimed that this under-
lying model is the final model free from multicollinearity).
With the similar proceedings and the same philosophy, we drop F9 in the next step. We are then
finally left with the model with 4 regressors F3, F4, F7, F8.

5.2.2 Reduced Model

Therefore, our reduced model is:

Y = β0 + β3X3 + β4X4 + β7X7 + β8X8 + ε

We calculate the VIF.

Figure 25: VIF for each of 4 regressors

We see that VIF for each of 4 regressors is very low and in fact all of them are < 5 under the
above model.
We obtain the variance decomposition of the model:
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Figure 26: Variance Decomposition for the model

So, we can observe that under this reduced model there does not exist any subset of regressors
causing multicollinearity in the model.

For the reduced model minimum eigen value of X ′X becomes 0.2286 which is quite larger than 0
where as for the original model the minimum eigen value of X ′X was 0.001176 which might be
responsible for the instability of X ′X under the original model.

We also see that,

• Condition no. of X ′X under original model=75.4432 (ill-conditioned)

• Condition no. of X ′X under reduced moel=3.1490

Correlation Matrix under the reduced model

Figure 27: Correlation Matrix for reduced model

We see that any pair of regressors are not highly correlated.

22



6 Ridge Regression: A remedy of Multicollinearity

We will consider the MLR model on standardized regressors that we have already stated as equa-
tion (1) (Under Multicollinearity).
Multicollinearity leads to coefficients with large magnitudes. Ridge regression shrinks the coeffi-
cients by imposing a penalty on their size. The technique yields biased estimates of the model
parameters but with lower variances.
We obtain the ridge parameter estimates by minimizing the (Y −Xβ)′(Y −Xβ)+λβ′β constrained
on β′β ≤ d2 (say), where λ is the shrinkage/complexity parameter that controls the amount of
shrinkage.
The Ridge estimate is given by:

β̂R = (X ′X + λI)
−1
X ′y

Thus λ is a positive constant added to the diagonal elements of X ′X, so that (X ′X + λI) is not
near singular and (X ′X + λI)−1 is no longer unstable.

6.1 Ridge Trace

We have considered the Ridge traceplot of different elements (or regressors) of β̂R against λ for
different values of λ = 0(0.001)0.5 and observe that after λ = 0.1335939 all elements of the ridge
parameter vector β̂R are becoming stable.

Figure 28: Ridge Trace plot

Then by taking λ = 0.13359 in our Ridge estimator for the model coefficients, we get the
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estimates as follows:

Parameter Estimate

β̂0 6.465791

β̂1 8.529023

β̂2 0.9720707

β̂3 2.126493

β̂4 -7.399937

β̂5 -2.687172

β̂6 -1.421968

β̂7 -0.3081103

β̂8 0.9998739

β̂9 -0.3554566

Thus our estimated model is of the form:

̂RMSD = β̂0 +
9∑
j=1

β̂j

(
Fj − F̄j
s.d.(Fj)

)
Thus our final model is:

̂RMSD = −0.7103491 + 0.001975163F1 + 0.0006459997F2 + 31.00019F3

− 0.1173224F4 − 4.479266× 10−6F5 − 0.0189902F6

− 0.0002242405F7 + 0.01718049F8 − 0.05516927F9

6.2 Comparison of Parameter Estimates

Although β̂R = (X ′X + λI)−1X ′y is a biased estimate of parameter vector β under the ridge
regression, we may compare the variances of each of the individual parameter estimates roughly
with that of the usual parameter estimates( usual parameter estimate β̂ is an unbiased estimate)
obtained by least squares technique.
Theoretically, we have the result,

V ar(β̂Rj
) ≤ V ar(β̂j)

On the basis of our model and data, here we get the same result; in fact in our case, variance of
every jth parameter estimate under ridge regression is strictly lesser than that of usual parameter
estimate.Following table shows the fact.
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Figure 29: Variances of parameter estiates obtained by OLS and Ridge regression

But we actually should have compared the MSE’s of the parameter estimates.
We observe that:

24.56 = Total MSE(β̂R) < Total MSE(β̂) = 2695.17

Hence, we may say that our fitted ridge regression is worthwhile in pulling up those very small
eigen values of original matrix (X’X) efficiently. The above results also signify that our ridge
regression model is quite able to provide us better parameter estimates in terms of Mean Squared
Errors (MSE) without dropping a single regressor.
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7 Variable Selection

Here our aim is to choose a subset of ‘best’ regressors (in some sense) from a pool of 9 possible
regressors. There are several ways of choosing this subset of ‘best’ regressors. In our analysis we
shall use 2 model selection criteria viz Akaike Information Criterion and Mallow’s Cp Statistic.

Theoretic criteria: Penalized likelihood function

Our MLR model is
Y = Xβ + ε

where we assume ε ∼ Nn(0, σ2In) such that Y ∼ Nn(Xβ, σ2In)
The likelihood function given by,

L(β, σ2|y) = (2n)−n/2(σ2)−n/2exp{− 1

2σ2
(y −Xβ)′(y −Xβ)}

So, the general form of the penalized likelihood function,

−2ln L∗ + penalty term

. Where,

L∗ = max
β,σ2

L(β, σ2|y) = L( ˆβmle, ˆσ2
mle)

By further calculation we get the penalized likelihood function as,

−2ln L∗+ penalty term = nln(SSRes)+ penalty term

7.1 Akaike Information Criterion

AIC is a single number score that can be used to determine which of multiple models is most
likely to be the best model for a given dataset. It estimates models relatively, meaning that AIC
scores are only useful in comparison with other AIC scores for the same dataset. A lower AIC
score is better.
Here the penalty term is 2p, p is the number of model parameters.

We calculate the AIC(p) using the following formula:

AIC(p) = −2ln L∗ + 2p = nln SSRes(p) + 2p

So, we compute AIC for all possible models and choose the model for which AIC is minimum.

7.2 Mallow’s Cp Statistic

Let the true Model has K regressors and intercept term and the Subset Model has p-1 regressors
and intercept. So that r = k − (p− 1) regressors are detected.
Define, Γp=Scaled sum of MSE’s of Ŷi for some subset model of order p, as

Γp = p+
SSB(p)

σ2
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Where, SSB(p) = β′(r)X
′
(r)

(
Ip − PX(r)

)
X(r)β(r)

Now, consider the following statistic,

Γ̂p = Cp =
SSRes(p)

σ̂2
+ 2p− n

This is called the Mallow’s Cp statistic. Furthermore, E(SSRes(p)) = (n− p)σ2 +SSB(p) (from
estimation from σ2). Thus,

Γp =
E(SSRes(p))

σ2 + 2p− n = p+
SSB(p)

σ2 = p iff the sum of squrare Bias, SSB(p) = 0.

Now, with E
(

Γ̂p

)
= E (Cp) ≈ Γp, we consider the model for which, Cp ≈ p for the first time,

i.e. we choose the smallest value of p for which Cp ≈ p.

Figure 30: AIC and Mallow’s Cp for different subsets of regressors

Conclusion

Based on the values seen, the value for Mallow’s Cp is indeed equal to 10 (the number of param-
eters) for Model 9. Further on, we notice that model 9, involving all the regressors from the full
model, is the one associated with the lowest value of AIC.
Hence by Variable Selection Technique, we end up with our full model itself.
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8 Model Adequacy

Here we will consider the model derived by eliminating Multicolliearity.
Thus in this case, our model is:

Yi = β0 + β3X3 + β4X4 + β7X7 + β8X8 + ε

The least square estimates of the model parameters are:

Parameter β0 β3 β4 β7 β8
Least Square Estimate −4.970 4.338× 101 −4.915× 10−2 7.439× 10−4 1.862× 10−2

The summary of the model is presented below:

Figure 31: Summary Chart for the model

R2 and Adjusted R2 are used to explain the overall adequacy of the model, where,

R2 = 1− SSRes
SSTot

R2
Adj = 1− SSres/(n− p− 1)

SSTot/(n− 1)

We get the values of R2 and Adjusted R2 to be 0.7192 and 0.7192 respectively, implying that
about 71.92% of the variation in observed responses is explained by our assumed linear model.
Thus we can conclude that this model is quite efficient in explaining the dependence of the re-
sponse (RMSD) on Fractional area of exposed non-polar residue (F3), Fractional area of exposed
non-polar part of the residue (F4), Euclidean Distance (F7) and Secondary structure penalty (F8).

R2 for Prediction

The Prediction Error Sum of Squares (or PRESS statistic) is defined as the sum of squared PRESS
residuals. We will use it as a measure of model quality.
The press statistic is given by:

PRESS =
n∑
i=1

(
ε̂i

1− hii

)2

PRESS is generally regarded as a measure of how well a regression model will perform in predicting
new data. A model with small value of PRESS is desired.
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R2 for prediction based on PRESS is given by:

R2
PRESS = 1− PRESS

SSTot

We get the value of PRESS as 93273.93. Correspondingly, we get, R2
PRESS = 0.7184843. Therefore

we would expect the model to explain about 71.85% of the variability in predicting new observa-
tions.

Graphical Overview of Model

We plot the observed and estimated response values against a random sample of 100 observations.

Figure 32: Plot for Observed and Estimated RMSD

We can see from this plot that our model is quite efficient in estimating the RMSD.
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We take a look at the Q-Q plot for residuals.

Figure 33: Q-Q plot for residuals

We can see that there is an indication that the errors may have heavier tails implying that the
errors may not be normally distributed.
Further,we take a look at the scatter plot of residuals vs. fitted response values.

Figure 34: Residual Plot for MLR Model

We can see that the nature of the plot is quite random. We do get a hint of association, but
the nature of dependence is not clear.
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9 Conclusion

We see that the dependence of protein’s tertiary structure is more efficiently explained by a subset
of the 9 available regressors (i.e. F3, F4, F7 and F8) (71.92% efficient in explaining the observed
response variance) than by all the full model involving 9 regressors (28.23% efficient in explaining
the observed response variance) as we have seen that some of the regressors have a near-linear
relationship amongst them.

We have also tried to keep the full model by allowing a trade-off between the biasness of the
parameter estimates and their mean square errors. We have seen that although in doing so, we
get biased estimates of the true model parameters, we however get estimates with lesser mean
square errors that normal estimates.

We have made attempts to select a subset of regressors which explain the response most effiecient
by looking at the AIC and Mallow’s Cp of different subset models. We however have found that
in doing so, we get back our full model itself.

We consider the final model as the one including regressors which do not have near-linear re-
lationship amongst themselves.
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A First Appendix

Data SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData SourceData Source
The data has been obtained from UCI Machine Learning Repository. The link is attached:
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+

Tertiary+Structure

B Second Appendix

R Codes used:

# Loading data

t <- read.csv("D:/CASP.csv")

# Library’s used

library(plyr)

library(dplyr)

attach(t)

library(MASS)

library(olsrr)

# Pairs Plot for variables

pairs(t,density=TRUE)

# MLR model on whole subset

p=10

n=length(RMSD)

model1 <- lm(RMSD~F1+F2+F3+F4+F5+F6+F7+F8+F9)

summary(model1)

# Detection of Outliers, Leverages, Influential points

ols_plot_cooksd_chart(model1) # Cooks distance plot

ols_plot_resid_stand(model1) # Standardized residual plot

ols_plot_resid_stud(model1) # Studentised residual plot

# Leverage Plot

h_ii=lm.influence(model1)$hat

plot(seq(1,n,1),h_ii,pch=,xlab="Observation",ylab="Leverages",

main="Leverage Plot")

# After deletion, plot of residuals for model 1 and model 2

ols_plot_resid_qq(model1)

ols_plot_resid_qq(model2)

library(mctest)

imcdiag(model,method=’VIF’)

eigprop(model)

# Q-Q Plots

ols_plot_resid_qq(model1)

# Two residual histrohrams for original and cleaned data model
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ols_plot_resid_hist(model1)

ols_plot_resid_hist(model2)

# Multicollinearity Checking

n=length(RMSD)

f=(n-1)/n

F1.s=(F1-mean(F1))/sqrt(var(F1)*f)

F2.s=(F2-mean(F2))/sqrt(var(F2)*f)

F3.s=(F3-mean(F3))/sqrt(var(F3)*f)

F4.s=(F4-mean(F4))/sqrt(var(F4)*f)

F5.s=(F5-mean(F5))/sqrt(var(F5)*f)

F6.s=(F6-mean(F6))/sqrt(var(F6)*f)

F7.s=(F7-mean(F7))/sqrt(var(F7)*f)

F8.s=(F8-mean(F8))/sqrt(var(F8)*f)

F9.s=(F9-mean(F9))/sqrt(var(F9)*f)

model1=(lm(RMSD~F1.s+F2.s+F3.s+F4.s+F5.s+F6.s+F7.s+F8.s+F9.s))

imcdiag(model1,method="VIF")

eigprop(model1)

#(F1,F5) and (F2,F3) are the subsets

# F1 and F2 is removed

model2=(lm(RMSD~F3.s+F4.s+F5.s+F6.s+F7.s+F8.s+F9.s))

imcdiag(model2,method="VIF")

eigprop(model2)

#(F5,F6) subset forms and F6 is removed

model3=(lm(RMSD~F3.s+F4.s+F5.s+F7.s+F8.s+F9.s))

imcdiag(model3,method="VIF")

eigprop(model3)

#(F4,F5) subset and F5 is removed though cond no is<5

model4=(lm(RMSD~F3.s+F4.s+F7.s+F8.s+F9.s))

imcdiag(model4,method="VIF")

eigprop(model4)

#(F4,F9) and F9 is removed

model5=(lm(RMSD~F3.s+F4.s+F7.s+F8.s))

imcdiag(model5,method="VIF")

eigprop(model5)
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#no subset forming also all VIFs <15

#eigen values checking~original model

X=matrix(c(F1.s,F2.s,F3.s,F4.s,F5.s,F6.s,F7.s,F8.s,F9.s),ncol=9)

X1=(t(X)%*%X)/n

round(X1,3)

eval1=eigen(X1)$values

#Reduced model

model5=(lm(RMSD~F3.s+F4.s+F7.s+F8.s))

X.red=matrix(c(F3.s,F4.s,F7.s,F8.s),ncol=4)

X1.red=((t(X.red)%*%X.red))/n

rownames(X1.red)=c("F3","F4","F7","F8")

colnames(X1.red)=c("F3","F4","F7","F8")

View(X1.red)

eval2=eigen(x1.red)$values

eval2

summary(model1)

# Ridge Regression

f=(n-1)/n

F1s <- (tt$F1-mean(tt$F1))/sqrt(var(tt$F1)*f)

F2s <- (tt$F2-mean(tt$F2))/sqrt(var(tt$F2)*f)

F3s <- (tt$F3-mean(tt$F3))/sqrt(var(tt$F3)*f)

F4s <- (tt$F4-mean(tt$F4))/sqrt(var(tt$F4)*f)

F5s <- (tt$F5-mean(tt$F5))/sqrt(var(tt$F5)*f)

F6s <- (tt$F6-mean(tt$F6))/sqrt(var(tt$F6)*f)

F7s <- (tt$F7-mean(tt$F7))/sqrt(var(tt$F7)*f)

F8s <- (tt$F8-mean(tt$F8))/sqrt(var(tt$F8)*f)

F9s <- (tt$F9-mean(tt$F9))/sqrt(var(tt$F9)*f)

ttt<- data.frame(c(tt$RMSD,F1s,F2s,F3s,F4s,F5s,F6s,F7s,F8s,F9s))

X <- matrix(c(F1s,F2s,F3s,F4s,F5s,F6s,F7s,F8s,F9s),ncol=9)

w <- t(X)%*%X

n1 <- length(tt$RMSD)

w=w/n1

library(genridge)

par(mfrow=c(1,1))

model4 <- ridge(tt$RMSD,X/sqrt(n1),lambda=seq(0,.5,0.001))

model4$kHKB

# 0.1335939

model_ridge<- ridge(tt$RMSD,X/sqrt(n1),lambda=0.1335939)

coef(model_ridge)

fl=function(x)

{

m1=solve(X1+(x*diag(9)))%%t(X)%%RMSD

m1

}
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z=seq(0,3,0.01)

length(z)

Mat=matrix(0,nrow=9,ncol=length(z))

for(i in 1:length(z))

{

Mat[,i]=fl(z[i])

}

lam_fin=0.1335939

#trace plot

par(mfrow=c(1,1))

plot(z,Mat[1,],col=’red’,xlim=c(0,0.5), ylim=c(0,100000),xaxs="i",yaxs="i",

main="Ridge Trace Plot",col.main="Black"

,xlab=’lambda’,ylab=’parameter estimates’,text(0.17, 6e+04,expression(lambda==0.1335)))

lines(z,Mat[1,],col=’red’,lwd=2)

points(z,Mat[2,],col=’blue’,pch=19)

lines(z,Mat[2,],col=’blue’,lwd=2)

points(z,Mat[3,],col=’green’,pch=19)

lines(z,Mat[3,],col=’green’,lwd=2)

points(z,Mat[4,],col=’yellow’,pch=19)

lines(z,Mat[4,],col=’yellow’,lwd=8)

points(z,Mat[5,],col=’purple’,pch=19)

lines(z,Mat[5,],col=’purple’,lwd=2)

points(z,Mat[6,],col=’orange’,pch=19)

lines(z,Mat[6,],col=’orange’,lwd=6)

points(z,Mat[7,],col=’pink’,pch=19)

lines(z,Mat[7,],col=’pink’,lwd=2)

points(z,Mat[8,],col=’skyblue’,pch=19)

lines(z,Mat[8,],col=’skyblue’,lwd=2)

lines(z,Mat[9,],col=’violet’,pch=19)

points(z,Mat[9,],col=’violet’,lwd=2)

abline(v=lam_fin,col=’black’,lwd=2)

legend("topright",legend=c("F1","F2","F3","F4","F5","F6","F7","F8","F9"),

title="corresponding regressors",col=c("red","blue","green",

"yellow","purple","orange","pink","skyblue","violet"),

lty=1,cex=0.7,lwd=3)

#comparison Ridge regression

betar.h=solve((n*X1)+(lam_fin*diag(9)))%%t(X)%%RMSD

eval1
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evect1=eigen(X1)$vectors

summary(model)

sig.hat=1.66^2

library(Matrix)

# install.packages("psych")

library(psych)

tr(solve(t(X)%*%X))

m1=matrix(0,nrow=9,ncol=9)

m2=matrix(0,nrow=9,ncol=9)

for(i in 1:9)

{

m1=m1+((evect1[,i]%*%t(evect1[,i]))/eval1[i])

m2=m2+(eval1[i](evect1[,i]%%t(evect1[,i]))/(eval1[i]+lam_fin)^2)

}

cov.betah=sig.hat*(m1)

cov.bridge=sig.hat*(m2)

# sum of variances under usual estimate

sig.hat*tr(m1)

#sum of variances under ridge estimate

sig.hat*tr(m2)

var.usual_e=diag(cov.betah)

var.ridge_e=diag(cov.bridge)

var.dfm=matrix(c(var.usual_e,var.ridge_e),nrow=9)

rownames(var.dfm)=1:9

colnames(var.dfm)=c("Var of usual parameter estimate", "var of Ridge estimate")

View(var.dfm)

cov.betah=sig.hat*(m1)

cov.bridge=sig.hat*(m2)

cov.bridge

cov.betah

tr(m2*sig.hat)+(lam_fin^2)t(betar.h)%%solve((n*X1)+

(lam_fin*diag(9)))%*%betar.h

mse.ridge=tr(m2*sig.hat)+(lam_fin^2)t(betar.h)%%solve((n*X1)+

(lam_fin*diag(9)))%*%betar.h

cov.betah

mse.usual=tr(cov.betah)

mse.usual

mse.ridge

# Work on Reduced Model

model_req <- lm(tt$RMSD~tt$F3+tt$F4+tt$F7+tt$F8)

plot(sort(rs),response[sort(rs)],type="l",main="Predicted

and Observed values of RMSD",xlab="Observation",ylab="Responses")

lines(sort(rs),predict(model_req)[sort(rs)],col="red")

legend("topleft",legend=c("Observed","Estimated"),lwd=3,lty=c(1,1),col=c("black","red"))
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