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legression

Motivation

@ Why modal regression?
@ Conventional regression methods may fail when:

e conditional distribution is heavy-tailed;
e conditional distribution is multi-modal.

@ Why nonparametric modal regression?

@ Taking a nonparametric model allows for more flexibility unlike a
(restrictive) parametric model: Mode(Y|X = x) =g+ B x
(Sager and Thisted (1982)).
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Modal Regression

Motivating Examples
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Figure: We show local regression estimate and its associated 95% prediction
bands alongside the modal regression and its 95% prediction bands for two
different simulated data. 4/33
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Definitions

@ We define operators:
UniMode =argmax, f(z), MultiMode ={z:f'(z)=0,f"(z) <0}.

Definition (Uni-modal function)

m(x) = UniMode(Y|X = x) = argmax, p(y|x).

Definition (Multi-modal function)

M(x) =Mult iMode(Y|X = x) = {y : $p(y1X) =0, £5p(y|x) <O},

@ Equivalently, we can write,
2

d d
m(x) = arg;naxp(x,y), M(x)={y: @p(x,y) =0, a—ygp(x,y) <0}.
(1)
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Definitions

@ We define operators:
UniMode =argmax, f(z), MultiMode ={z:f'(z)=0,f"(z) <0}.

Definition (Uni-modal function)

m(x) = UniMode(Y|X = x) = argmax, p(y|x).

Definition (Multi-modal function)

M(x) =Mult iMode(Y|X = x) = {y : $p(y1X) =0, £5p(y|x) <O},

@ Equivalently, we can write,
2

m(x) = argmaxp(x,y), M(x)={y: aip(x,y) =0, %p(x,y) <0}.
y Y y
(1)
@ We will focus on multi-modal regression (Chen et al. (2016)).
Why?
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Uni-modal vs. Multi-modal Regression

Figure: Uni-modal regression and multi-modal regression along with their
corresponding 95% prediction sets on a simulated data with three
components.
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Mean-shift Algorithm

Modal Regression Estimators

@ Our estimator is plug-in from the KDE:

A~

d ., %
Mn(X):{y: 7pn(xay):01 jpn(xuy) <O}7 (2)
dy dy

7/33



Mean-shift Algorithm

Modal Regression Estimators

@ Our estimator is plug-in from the KDE:

A~

J . P
Mn(x) ={y: @pn(x,y) =0, a—yzpn(x,y) <0}, (2)

where

Bn(x,y) = hdHZ (”X X”)K(yzy"). 3)

@ To compute M,(x) from the data, we use the mean-shift
algorithm (Einbeck and Tutz (2006)).
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The Mean-shift Algorithm

Input: Data samples 2 = {(Xj, Y1),...,(Xn, Yn)}, bandwidth h.
(The kernel K is assumed to be Gaussian.)

1. Initialize mesh points .# ¢ R (a common choice is .# = 2,
the data samples).

2. For each (x,y) € 4, fix x, and update y using the following
iterations until convergence:

i Y/K(HX;X;H) K<%)
k(B ()

Output: The set .#, containing the points (x, y*), where x is a
predictor value as fixed in .#, and y* is the corresponding limit

of the mean-shift iterations . ) )
Algorithm 1: Partial mean-shift algorithm

(4)
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Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions

@ We define a modal manifold collection over all inputs x as:

S={(x,y):xe D,y e M(x)}
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Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions

@ We define a modal manifold collection over all inputs x as:

S={(x,y):xe D,y e M(x)}

@ We assume S can be factorized as:

S={(x,y):xeD,y e M(x)} =Sy U---USg, ()
where each S;, j=1,2,...,K is a connected manifold defined as
follows:

Sj = {(X, m,-(x)) X e A/} (6)

for some function m;(x) and open set A;.
@ As a convention, m;(x) = ¢ if x Z A;.
@ This effectively allows us to write
M(x) = {m(x),....mk(x)}.
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Derivative of Modal Manifold Collection

Modal Manifold Collection: An example

Figure: S1 and S2 represent modal manifolds.
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Modal Manifolds

Derivative of Modal Functions

Lemma (Derivative of modal functions)

Assume that p is twice differentiable, and let
S={(x,y):xe€ D,y € M(x)} be the modal manifold collection.

Assume that S factorizes according to (5), (6). Then, when x € A; ,

_p,VX(X’ m/'(X)) (7)

Vi) = = o mi(x))

where pyx = an"—yp(x, y) is the gradient over x of py(X,y).

@ Interpretation: When p is smooth, each modal manifold is also
smooth.
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Modal Manifolds

Hausdorff Distance

@ To characterize smoothness of M(x), we require a notion of
distance over sets: Hausdorff Distance.
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Modal Manifolds

Hausdorff Distance

@ To characterize smoothness of M(x), we require a notion of
distance over sets: Hausdorff Distance.

Definition
Let us consider a metric space (M, d) and suppose X and Y be two
non-empty subsets of the metric space. Then the Hausdroff distance
between X and Y is defined by,
du(X,Y)=max{sup d(x,Y),sup d(X,y)}
xeX yey

where d(a, B) is the distance from a point a to the set B,
d(a, B) =infpep d(a, b)

@ Equivalently, we can define the Hausdorff distance as:
Haus(A,B)=inf{r: ACB&r,BC Adr},
where A r = {x:d(x,A) < r} with d(x,A) =infyeal|x—y}.
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Modal Manifolds

Derivative of Modal Manifold Collection

Theorem (Smoothness of Modal Manifold Collection)

Assume the conditions of Lemma 3. Assume furthermore all partial
derivatives of p are bounded by C, and there exists A, > 0 such that
pyy(x,y) < —2Ap forally € M(x) and x € D. Then

_ Haus(M(x),M(x +€))
lim < =
le|—0 €| J I A2
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Modal Manifolds

Derivative of Modal Manifold Collection

Theorem (Smoothness of Modal Manifold Collection)

Assume the conditions of Lemma 3. Assume furthermore all partial
derivatives of p are bounded by C, and there exists A, > 0 such that
pyy(x,y) < —2Ap forally € M(x) and x € D. Then

_ Haus(M(x),M(x +€))
lim < =
le|—0 €| J I A2

@ Interpretation: Can be thought of as a statement about
Lipschitz continuity with respect to Hausdorff distance.
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Error Measurements

We consider the following losses to measure the error:
@ Pointwise Error:

An(x) = Haus{Mp(x), M(x)},

where Haus(A,B) Hausdroff distance between the sets A and B.
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Error Measurements

We consider the following losses to measure the error:
@ Pointwise Error:

An(x) = Haus{Mp(x), M(x)},

where Haus(A,B) Hausdroff distance between the sets A and B.
@ Uniform Error:

Ap =supyep An(X).

@ Mean Integrated Squared Error (MISE):

MISE(f,) = E ( '

JxeD

A%(x)dx) .
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Assumptions on Joint Density

Assumption (A1)
The joint density p € BC*(C,), for some Cp, > 0.
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The joint density p € BC*(C,), for some Cp, > 0.

Assumption (A2)

The collection of modal manifolds can S can be factorized into
S=84USpU...USk, where S; is a connected curve that follows a
parametrization S; = {(x, mj(x)) : x € A;} for some m;(x) and

A1, Ao, ..., Ak form an open cover for the support D of X.

\

Assumption (A3)

There exists A, > 0 such that for any (x,y) € D x K with py(x,y) =0,
Py (X, ¥) | > Z2.

A
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Assumptions on Kernel Function

Assumption (K1)

The Kernel function K € BC?(Cy) and satisfies for a = 0,1,2,

/R(K (0)2(2)dz < o0 /R 2(K®)(2)dz < oo
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Assumptions on Kernel Function

Assumption (K1)

The Kernel function K € BC?(Cy) and satisfies for a = 0,1,2,

/R(K (0)2(2)dz < o0 /R 2(K®)(2)dz < oo

5\

Assumption (K2)

The collection ¢ is a VC-type class, i.e. there exists A,v > 0 such
that for0 < € < 1
,Z\V
supg N(#', L2(Q), Ce) < v

where N(T,d, €) is the e—covering number for the semimetric space
(T,d) and Q is any probability measure.

™ = = =
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Few Notations

Before proceeding further let us define the following quantities:

1P =Pl = supy y [D(X,¥) = p(x,¥)]-
1P — Pl = supyy 1By (X, ) — Py (X, ¥)]I-
1Pn— Pl = supy,y | Byy (X, ¥) — Py (X ¥)|I.
1Bn — plI% 2 = max{[|Pn — pII2. 1Pn — PIIL. 11Bn — Pl
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Pointwise Rate

Theorem (Pointwise Error Rate)

Assuming (A1-3) and (K1-2) we define the stochastic process An(x)
as,

) { 200 1An(X) = maxzem {10y (x,2) | 1y.n(x,2) [} | if An(x) >0
n(X) =

Then for sufficiently small ||pn — plz. » we will have,

supxep(An(X)) = Op([|Pn — Pl 2)-
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Theorem (Pointwise Error Rate)

Assuming (A1-3) and (K1-2) we define the stochastic process An(x)
as,

) { 200 1An(X) = maxzem {10y (x,2) | 1y.n(x,2) [} | if An(x) >0
n(X) =

Then for sufficiently small ||pn — plz. » we will have,

supxep(An(X)) = Op([|Pn — Pl 2)-

@ Interpretation: Under sufficient regularity conditions, Ap(x) can
be approximated max;cu { 1P,y (X.2)| By.n(,2) |}.
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Pointwise Rate

Theorem (Pointwise Error Rate contd.)
nh

Moreover, at any fixed x € D, when ° 5 0 and h— 0 we have,

An(x) = O(FP) + Oy (‘/nhjf%> .
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Pointwise Rate

Theorem (Pointwise Error Rate contd.)
nh

Moreover, at any fixed x € D, when ° 5 0 and h— 0 we have,

An(x) = O(FP) + Oy (‘/nhjf%> .

@ Interpretation: If the curvature of the joint density function along
y is bounded away from 0, then the error can be approximated by
the error of Py n(x, 2).

19/33



Uniform Rate

Theorem (Uniform Error rate)

Assume (A1-3) and (K1-2), then as ”” ° s andh— 0 we have,

logn
A,,—Op<\/ h§+3>+0(h2)
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Uniform Rate

Theorem (Uniform Error rate)

Assume (A1-3) and (K1-2), then as ”” ° s andh— 0 we have,

logn
A,,—Op<\/ h§+3>+0(h2)

@ Both the Pointwise and Uniform Error have the usual
nonparametric rate, where Rate = Bias + v/ Variance.
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MISE Rate

Theorem (MISE rate)
Assuming (A1-3) and (K1-2), as

nhd+5

0 andh— 0,

. 1
MISE(M,) = O(h*)+ O <nhd+3> .
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MISE Rate

Theorem (MISE rate)
Assuming (A1-3) and (K1-2), as

nhd+5

0 andh— 0,

5 1
MISE(M,) = O(h*)+ O <nhd+3> .

@ Starting from Pointwise Error rate, Following the arguments from
Chacon et al. (2011);Chacén and Duong (2013) it can be shown
that the integrated bias and variance yields the same rate of
convergence.
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Ideal Confidence Sets

In an ideal setting, following the estimation of M,(x), we could define
confidence set at x by

ég(x) = Mn(x) @ 8n,1—a(x)
where, P(An(X) > 6p1-a(X)) = a.
We have, by construction, P(M(x) € €9(x)) =1 —a.

Since the distribution of A,(x) is unknown, we estimate 3,,71_06 using
bootstrap.
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Modified setup with Bootstrap sample

Considering Bootstrap samples (X, Y{),...,(X;, Y;), we define error
metric based on estimated regression mode M;(x):

A% (x) = Haus(M:(x), Mp(x)).

Repeating bootstrap sampling B times to get A1 e A}; o we get
6,,71,05( ) as the solution to the equation:

B_1ZH< >5n1 a)%a.
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Pointwise and Uniform confidence sets

The estimated pointwise confidence set is therefore given by

Cn(X) = Ma(x) © 8p1_a(x), X € D.
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Pointwise and Uniform confidence sets

The estimated pointwise confidence set is therefore given by

Cn(X) = Mn(X) @ 8p1_o(x), x € D.
Further, defining 6 1 by
IP(M(X) C M@ 801 _q, VX € D) —1-a,
and estimating 6, 1_, based on quantiles of bootstrapped error metric

A% = supHaus (M (x), Mp(x)).

xeD
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Pointwise and Uniform confidence sets

The estimated pointwise confidence set is therefore given by

Cn(X) = Mn(X) @ 8p1_o(x), x € D.
Further, defining 6 1 by
IP(M(X) C M@ 801 _q, VX € D) —1-a,
and estimating 6, 1_, based on quantiles of bootstrapped error metric

A% = supHaus (M (x), Mp(x)).

xeD

Our uniform confidence set is then given by
Co={(x.y): X €Dy € Mn(x) D81 o} 9)
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Few Definitions

@ We consider the estimation problem of regression modes of
smoothed joint density p(x, y) = E(pn(x,y), since we obtain
faster convergence rate.

@ Similarly let M(x) = ]E(I\7I,,(x)) be smoothed regression modes at
xeD. R y )
@ Define Ap(x) = Haus(Mp(x),M(x)) and Ap = supAp(x).

xeD
@ We consider function space

7= {(u, V) s foy(U.1)  Fey(u,v) = By ()

K(”X;UH) K™ (y—hv) xeD,ye M(x)}.

@ Let B be a Gaussian process defined on .# such that Vf, f, € %
Cov(B(f1),B(f)) =E(f (X, Yi)- (X, Y1) —E(fi (X, Vi) E(R(X;, Yi))-
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Limiting Distribution

Consider an empirical process Gpdefined on .% as

Galf) = n 2 Y. (D)~ E(H(DY), Dy = (X, Y).
=1

Theorem (Asymptotic Theory)

Under regularity conditions,
® Vnhd+3A, ~ supre 7{|Gn(f)|} = supre 7 {B(f)} .
@ More precisely,

’ /7nhd+3A,,—IB%‘ _Op (<I0g4n>1/8) |

nhd+3

Since Gaussian Process involves unknown quantities, this in itself is

not sufficient to conduct statistical inferences.
26/33



Bootstrap Consistency

We use bootstrap to apEroximate Ap. We define another metric
A}, = supyep Haus(Mp, Mp(x)).

Under regularity conditions,
@ Vnh9+3 A% ~ sups. 5 |B(f)| for function space .Z,
@ Vnhd+3A% ~ /nhd+3A .
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Bootstrap Consistency

We use bootstrap to apEroximate Ap. We define another metric
A}, = supyep Haus(Mp, Mp(x)).

Under regularity conditions,
@ Vnh9+3 A% ~ sups. 5 |B(f)| for function space .Z,
@ Vnhd+3A% ~ /nhd+3A .

@ Interpretation This theorem brings forth an equivalence in
limiting distribution of A}, and Ap. Infact, The rate of convergence

1/8
in distribution is O ((r';ﬁ;‘g) / )
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Uniform Confidence Sets

Corollary (Uniform confidence sets)

Assume (A1-3) and (K1-2). Then as ,Ogn — o and h— 0,

v/ i a I 4 1/8

Therefore. the asymptotic valid confidence for M is given as

{(X’Y) Y € Mp(X)®81_g.x € D},

n1_q is the upper 1 — o quantile of A,

28/33



Bandwidth Selection

Prediction Sets

@ We define:
g_o(X)=inf{e>0:P(d(Y,M(x))>e| X=x)<a}.

€1_q =inf{e > 0:P(d(Y,M(X)) >¢) < a}.
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g_o(X)=inf{e>0:P(d(Y,M(x))>e| X=x)<a}.

€1_q =inf{e > 0:P(d(Y,M(X)) >¢) < a}.

Definition (Pointwise Prediction Set)
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Bandwidth Selection

Prediction Sets

@ We define:
g_o(X)=inf{e>0:P(d(Y,M(x))>e| X=x)<a}.

€1_q =inf{e > 0:P(d(Y,M(X)) >¢) < a}.

Definition (Pointwise Prediction Set)
P1—a(X) = M(x) D €1_o(X) CR.

Definition (Uniform Prediction Set)

Pi_a={(x,y):x€D, y e M(x)®&1_o} S DxR.
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Bandwidth Selection

@ We can choose the bandwidth of the KDE by minimizing the size
of the prediction set.
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Bandwidth Selection

@ We can choose the bandwidth of the KDE by minimizing the size
of the prediction set.

@ Choose A
h* =argminvol(%1_qg.p),
h>0 '

where 971_05’,, is the estimated uniform prediction set.
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Bandwidth Selection: Example

Size of 95% Prediction Sets

Figure: Bandwidth selection based on size of prediction sets.
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Final Remarks

@ We reviewed a nonparametric method for modal regression
estimation, based on a KDE of a joint sample of data points
()(H, yq )7...,()(,77 ch)'
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Final Remarks

@ We reviewed a nonparametric method for modal regression
estimation, based on a KDE of a joint sample of data points
(X1, Y1), (Xn, Yn).

@ We studied some of the geometry underlying the modal
regression set, and described techniques for confidence set
estimation, prediction set estimation, and bandwidth selection for
the underlying KDE.
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Final Remarks

@ We reviewed a nonparametric method for modal regression
estimation, based on a KDE of a joint sample of data points
(X1, Y1), (Xn, Yn).

@ We studied some of the geometry underlying the modal
regression set, and described techniques for confidence set
estimation, prediction set estimation, and bandwidth selection for
the underlying KDE.

@ The main message is that nonparametric modal regression offers
a relatively simple and usable tool to capture conditional
structure missed by conventional regression methods.

@ For more information: Report R Codes

Thank Youl!
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