
Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Understanding Nonparametric Multimodal
Regression via Kernel Density Estimation

A. Bhattacharjee* R. Mondal* R. Vasishtha* S. S. Banerjee*

*Department of Mathematics and Statistics
Indian Institute of Technology, Kanpur

February 20, 2022

1 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Contents

1 Introduction
Modal Regression

2 Estimation
Mean-shift Algorithm

3 Geometry
Modal Manifolds
Derivative of Modal Manifold Collection

4 Consistency

5 Confidence Sets

6 Prediction Sets
Bandwidth Selection

7 References

2 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Motivation

Why modal regression?
Conventional regression methods may fail when:

conditional distribution is heavy-tailed;
conditional distribution is multi-modal.

Why nonparametric modal regression?
Taking a nonparametric model allows for more flexibility unlike a
(restrictive) parametric model: Mode(Y |X = x) = β0 +β T x
(Sager and Thisted (1982)).
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Motivating Examples
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Figure: We show local regression estimate and its associated 95% prediction
bands alongside the modal regression and its 95% prediction bands for two
different simulated data. 4 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Definitions
We define operators:
UniMode=argmaxz f (z), MultiMode= {z : f ′(z) = 0, f ′′(z)< 0}.

Definition (Uni-modal function)

m(x) = UniMode(Y |X = x) = argmaxy p(y |x).

Definition (Multi-modal function)

M(x) = MultiMode(Y |X = x) = {y : ∂

∂y p(y |x) = 0, ∂ 2

∂y2 p(y |x)< 0}.

Equivalently, we can write,

m(x) = argmax
y

p(x ,y), M(x) = {y :
∂

∂y
p(x ,y) = 0,

∂ 2

∂y2 p(x ,y)< 0}.

(1)
We will focus on multi-modal regression (Chen et al. (2016)).
Why?

5 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Definitions
We define operators:
UniMode=argmaxz f (z), MultiMode= {z : f ′(z) = 0, f ′′(z)< 0}.

Definition (Uni-modal function)

m(x) = UniMode(Y |X = x) = argmaxy p(y |x).

Definition (Multi-modal function)

M(x) = MultiMode(Y |X = x) = {y : ∂

∂y p(y |x) = 0, ∂ 2

∂y2 p(y |x)< 0}.

Equivalently, we can write,

m(x) = argmax
y

p(x ,y), M(x) = {y :
∂

∂y
p(x ,y) = 0,

∂ 2

∂y2 p(x ,y)< 0}.

(1)
We will focus on multi-modal regression (Chen et al. (2016)).
Why?

5 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Definitions
We define operators:
UniMode=argmaxz f (z), MultiMode= {z : f ′(z) = 0, f ′′(z)< 0}.

Definition (Uni-modal function)

m(x) = UniMode(Y |X = x) = argmaxy p(y |x).

Definition (Multi-modal function)

M(x) = MultiMode(Y |X = x) = {y : ∂

∂y p(y |x) = 0, ∂ 2

∂y2 p(y |x)< 0}.

Equivalently, we can write,

m(x) = argmax
y

p(x ,y), M(x) = {y :
∂

∂y
p(x ,y) = 0,

∂ 2

∂y2 p(x ,y)< 0}.

(1)
We will focus on multi-modal regression (Chen et al. (2016)).
Why?

5 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Definitions
We define operators:
UniMode=argmaxz f (z), MultiMode= {z : f ′(z) = 0, f ′′(z)< 0}.

Definition (Uni-modal function)

m(x) = UniMode(Y |X = x) = argmaxy p(y |x).

Definition (Multi-modal function)

M(x) = MultiMode(Y |X = x) = {y : ∂

∂y p(y |x) = 0, ∂ 2

∂y2 p(y |x)< 0}.

Equivalently, we can write,

m(x) = argmax
y

p(x ,y), M(x) = {y :
∂

∂y
p(x ,y) = 0,

∂ 2

∂y2 p(x ,y)< 0}.

(1)
We will focus on multi-modal regression (Chen et al. (2016)).
Why?

5 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Definitions
We define operators:
UniMode=argmaxz f (z), MultiMode= {z : f ′(z) = 0, f ′′(z)< 0}.

Definition (Uni-modal function)

m(x) = UniMode(Y |X = x) = argmaxy p(y |x).

Definition (Multi-modal function)

M(x) = MultiMode(Y |X = x) = {y : ∂

∂y p(y |x) = 0, ∂ 2

∂y2 p(y |x)< 0}.

Equivalently, we can write,

m(x) = argmax
y

p(x ,y), M(x) = {y :
∂

∂y
p(x ,y) = 0,

∂ 2

∂y2 p(x ,y)< 0}.

(1)
We will focus on multi-modal regression (Chen et al. (2016)).
Why?

5 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Definitions
We define operators:
UniMode=argmaxz f (z), MultiMode= {z : f ′(z) = 0, f ′′(z)< 0}.

Definition (Uni-modal function)

m(x) = UniMode(Y |X = x) = argmaxy p(y |x).

Definition (Multi-modal function)

M(x) = MultiMode(Y |X = x) = {y : ∂

∂y p(y |x) = 0, ∂ 2

∂y2 p(y |x)< 0}.

Equivalently, we can write,

m(x) = argmax
y

p(x ,y), M(x) = {y :
∂

∂y
p(x ,y) = 0,

∂ 2

∂y2 p(x ,y)< 0}.

(1)
We will focus on multi-modal regression (Chen et al. (2016)).
Why?

5 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Regression

Uni-modal vs. Multi-modal Regression
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Figure: Uni-modal regression and multi-modal regression along with their
corresponding 95% prediction sets on a simulated data with three
components.
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Modal Regression Estimators

Our estimator is plug-in from the KDE:

M̂n(x) = {y :
∂

∂y
p̂n(x ,y) = 0,

∂ 2

∂y2 p̂n(x ,y)< 0}, (2)

where

p̂n(x ,y) =
1

nhd+1

n

∑
i=1

K
(
||x −Xi ||

h

)
K
(

y −Yi

h

)
. (3)

To compute M̂n(x) from the data, we use the mean-shift
algorithm (Einbeck and Tutz (2006)).
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The Mean-shift Algorithm

Input: Data samples D = {(X1,Y1), ...,(Xn,Yn)}, bandwidth h.
(The kernel K is assumed to be Gaussian.)

1. Initialize mesh points M ⊂Rd+1 (a common choice is M = D ,
the data samples).
2. For each (x ,y) ∈M , fix x , and update y using the following
iterations until convergence:

y ←−
∑

n
i=1 YiK

(
||x−Xi ||

h

)
K
(

y−Yi
h

)
∑

n
i=1 K

(
||x−Xi ||

h

)
K
(

y−Yi
h

) (4)

Output: The set M ∞, containing the points (x ,y∞), where x is a
predictor value as fixed in M , and y∞ is the corresponding limit
of the mean-shift iterations .

Algorithm 1: Partial mean-shift algorithm
8 / 33
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Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions
We define a modal manifold collection over all inputs x as:

S= {(x ,y) : x ∈ D,y ∈M(x)}

We assume S can be factorized as:

S= {(x ,y) : x ∈ D,y ∈M(x)}= S1∪·· ·∪SK , (5)

where each Sj , j = 1,2, . . . ,K is a connected manifold defined as
follows:

Sj = {(x ,mj(x)) : x ∈ Aj} (6)

for some function mj(x) and open set Aj .
As a convention, mj(x) = φ if x ̸∈ Aj .
This effectively allows us to write

M(x) = {m1(x), . . . ,mK (x)}.
9 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Manifolds
Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions
We define a modal manifold collection over all inputs x as:

S= {(x ,y) : x ∈ D,y ∈M(x)}

We assume S can be factorized as:

S= {(x ,y) : x ∈ D,y ∈M(x)}= S1∪·· ·∪SK , (5)

where each Sj , j = 1,2, . . . ,K is a connected manifold defined as
follows:

Sj = {(x ,mj(x)) : x ∈ Aj} (6)

for some function mj(x) and open set Aj .
As a convention, mj(x) = φ if x ̸∈ Aj .
This effectively allows us to write

M(x) = {m1(x), . . . ,mK (x)}.
9 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Manifolds
Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions
We define a modal manifold collection over all inputs x as:

S= {(x ,y) : x ∈ D,y ∈M(x)}

We assume S can be factorized as:

S= {(x ,y) : x ∈ D,y ∈M(x)}= S1∪·· ·∪SK , (5)

where each Sj , j = 1,2, . . . ,K is a connected manifold defined as
follows:

Sj = {(x ,mj(x)) : x ∈ Aj} (6)

for some function mj(x) and open set Aj .
As a convention, mj(x) = φ if x ̸∈ Aj .
This effectively allows us to write

M(x) = {m1(x), . . . ,mK (x)}.
9 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Manifolds
Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions
We define a modal manifold collection over all inputs x as:

S= {(x ,y) : x ∈ D,y ∈M(x)}

We assume S can be factorized as:

S= {(x ,y) : x ∈ D,y ∈M(x)}= S1∪·· ·∪SK , (5)

where each Sj , j = 1,2, . . . ,K is a connected manifold defined as
follows:

Sj = {(x ,mj(x)) : x ∈ Aj} (6)

for some function mj(x) and open set Aj .
As a convention, mj(x) = φ if x ̸∈ Aj .
This effectively allows us to write

M(x) = {m1(x), . . . ,mK (x)}.
9 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Manifolds
Derivative of Modal Manifold Collection

Modal Manifolds Collection: Definitions
We define a modal manifold collection over all inputs x as:

S= {(x ,y) : x ∈ D,y ∈M(x)}

We assume S can be factorized as:

S= {(x ,y) : x ∈ D,y ∈M(x)}= S1∪·· ·∪SK , (5)

where each Sj , j = 1,2, . . . ,K is a connected manifold defined as
follows:

Sj = {(x ,mj(x)) : x ∈ Aj} (6)

for some function mj(x) and open set Aj .
As a convention, mj(x) = φ if x ̸∈ Aj .
This effectively allows us to write

M(x) = {m1(x), . . . ,mK (x)}.
9 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Modal Manifolds
Derivative of Modal Manifold Collection

Modal Manifold Collection: An example
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Figure: S1 and S2 represent modal manifolds.
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Derivative of Modal Functions

Lemma (Derivative of modal functions)

Assume that p is twice differentiable, and let
S= {(x ,y) : x ∈ D,y ∈M(x)} be the modal manifold collection.
Assume that S factorizes according to (5), (6). Then, when x ∈ Aj ,

∇mj(x) =−
pyx (x ,mj(x))
pyy (x ,mj(x))

(7)

where pyx = ∇x
∂

∂y p(x ,y) is the gradient over x of py (x ,y).

Interpretation: When p is smooth, each modal manifold is also
smooth.
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Hausdorff Distance
To characterize smoothness of M(x), we require a notion of
distance over sets: Hausdorff Distance.

Definition

Let us consider a metric space (M,d) and suppose X and Y be two
non-empty subsets of the metric space. Then the Hausdroff distance
between X and Y is defined by,

dH(X ,Y ) = max{sup
x∈X

d(x ,Y ), sup
y∈Y

d(X ,y)}

where d(a,B) is the distance from a point a to the set B,
d(a,B) = infb∈B d(a,b).

Equivalently, we can define the Hausdorff distance as:

Haus(A,B) = inf{r : A⊆ B⊕ r ,B ⊆ A⊕ r},
where A⊕ r = {x : d(x ,A)≤ r} with d(x ,A) = infy∈A ||x −y ||.

12 / 33
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Derivative of Modal Manifold Collection

Theorem (Smoothness of Modal Manifold Collection)

Assume the conditions of Lemma 3. Assume furthermore all partial
derivatives of p are bounded by C, and there exists λ2 > 0 such that
pyy (x ,y)<−λ2 for all y ∈M(x) and x ∈ D. Then

lim
|ε|−→0

Haus(M(x),M(x + ε))

|ε|
≤ max

j=1,...,K
||m′j(x)|| ≤

C
λ2

< ∞. (8)

Interpretation: Can be thought of as a statement about
Lipschitz continuity with respect to Hausdorff distance.

13 / 33
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Error Measurements

We consider the following losses to measure the error:
Pointwise Error:

∆n(x) = Haus{M̂n(x),M(x)},

where Haus(A,B) Hausdroff distance between the sets A and B.
Uniform Error:

∆n = supx∈D ∆n(x).

Mean Integrated Squared Error (MISE):

MISE(M̂n) = E
(∫

x∈D
∆2

n(x)dx
)
.

14 / 33
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Assumptions on Joint Density

Assumption (A1)

The joint density p ∈ BC4(Cp), for some Cp > 0.

Assumption (A2)

The collection of modal manifolds can S can be factorized into
S= S1∪S2∪ ...∪SK , where Sj is a connected curve that follows a
parametrization Sj = {(x ,mj(x)) : x ∈ Aj} for some mj(x) and
A1,A2, ...,AK form an open cover for the support D of X .

Assumption (A3)

There exists λ2 > 0 such that for any (x ,y) ∈ D×K with py (x ,y) = 0,
|pyy (x ,y) |> λ2.

15 / 33
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Assumptions on Kernel Function

Assumption (K1)

The Kernel function K ∈ BC2(CK ) and satisfies for α = 0,1,2,∫
R
(K (α))2(z)dz < ∞

∫
R

z2(K (α))(z)dz < ∞

Assumption (K2)

The collection K is a VC-type class, i.e. there exists A,v > 0 such
that for 0 < ε < 1

supQ N(K ,L2(Q),CK ε )≤ Av

εv ,

where N(T ,d ,ε) is the ε−covering number for the semimetric space
(T ,d) and Q is any probability measure.
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that for 0 < ε < 1

supQ N(K ,L2(Q),CK ε )≤ Av

εv ,

where N(T ,d ,ε) is the ε−covering number for the semimetric space
(T ,d) and Q is any probability measure.
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Few Notations

Before proceeding further let us define the following quantities:

∥p̂n−p∥0∞ = supx ,y ∥p̂(x ,y)−p(x ,y)∥.

∥p̂n−p∥1∞ = supx ,y ∥p̂y (x ,y)−py (x ,y)∥.

∥p̂n−p∥2∞ = supx ,y ∥p̂yy (x ,y)−pyy (x ,y)∥.

∥p̂n−p∥∗
∞,2 =max{∥p̂n−p∥0∞,∥p̂n−p∥1∞,∥p̂n−p∥2∞}.
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Pointwise Rate

Theorem (Pointwise Error Rate)

Assuming (A1-3) and (K1-2) we define the stochastic process An(x)
as,

An(x) =


1

∆n(x)
|∆n(x)−maxz∈M(x){ |p−1

yy (x ,z) | |p̂y ,n(x ,z) |} | if ∆n(x)> 0

0 if ∆n(x) = 0

Then for sufficiently small ∥p̂n−p∥∗
∞,2 we will have,

supx∈D(An(x)) = Op(∥p̂n−p∥∗
∞,2).

Interpretation: Under sufficient regularity conditions, ∆n(x) can
be approximated maxz∈M(x){ |p−1

yy (x ,z) | |p̂y ,n(x ,z) |}.
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Pointwise Rate

Theorem (Pointwise Error Rate contd.)

Moreover, at any fixed x ∈ D, when nhd+5

logn → ∞ and h→ 0 we have,

∆n(x) = O(h2)+Op

(√
1

nhd+3

)
.

Interpretation: If the curvature of the joint density function along
y is bounded away from 0, then the error can be approximated by
the error of p̂y ,n(x ,z).
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Uniform Rate

Theorem (Uniform Error rate)

Assume (A1-3) and (K1-2), then as nhd+5

logn → ∞ and h→ 0 we have,

∆n = Op

(√
logn

nhd+3

)
+O(h2).

Both the Pointwise and Uniform Error have the usual
nonparametric rate, where Rate = Bias+

√
Variance.
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MISE Rate

Theorem (MISE rate)

Assuming (A1-3) and (K1-2), as nhd+5

logn → ∞ and h→ 0,

MISE(M̂n) = O(h4)+O
(

1
nhd+3

)
.

Starting from Pointwise Error rate, Following the arguments from
Chacón et al. (2011);Chacón and Duong (2013) it can be shown
that the integrated bias and variance yields the same rate of
convergence.
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Ideal Confidence Sets

In an ideal setting, following the estimation of Mn(x), we could define
confidence set at x by

Ĉ0
n(x) = M̂n(x)⊕δn,1−α(x)

where, P(∆n(x)> δn,1−α(x)) = α.

We have, by construction, P(M(x) ∈ Ĉ0
n(x)) = 1−α.

Since the distribution of ∆n(x) is unknown, we estimate δ̂n,1−α using
bootstrap.
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Modified setup with Bootstrap sample

Considering Bootstrap samples (X ∗1 ,Y
∗
1 ), . . . ,(X

∗
n ,Y ∗n ), we define error

metric based on estimated regression mode M̂∗n(x):

∆̂∗n(x) = Haus(M̂∗n(x),M̂n(x)).

Repeating bootstrap sampling B times to get ∆̂∗1,n, . . . ,∆̂
∗
B,n, we get

δ̂n,1−α(x) as the solution to the equation:

B−1
B

∑
j=1

I
(
∆̂∗j ,n(x)> δ̂n,1−α

)
≈ α.
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Pointwise and Uniform confidence sets
The estimated pointwise confidence set is therefore given by

Ĉn(x) = M̂n(x)⊕ δ̂n,1−α(x), x ∈ D.

Further, defining δm,1−α by

P
(

M(x)⊆ M̂∗n⊕δn,1−α , ∀x ∈ D
)
= 1−α,

and estimating δn,1−α based on quantiles of bootstrapped error metric

∆̂∗n = sup
x∈D

Haus(M̂∗n(x),M̂n(x)).

Our uniform confidence set is then given by

Ĉn =
{
(x ,y) : x ∈ D,y ∈ M̂n(x)⊕ δ̂n,1−α

}
. (9)
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Few Definitions
We consider the estimation problem of regression modes of
smoothed joint density p̃(x ,y) = E(p̂n(x ,y), since we obtain
faster convergence rate.
Similarly let M̃(x) = E(M̂n(x)) be smoothed regression modes at
x ∈ D.
Define ∆̃n(x) = Haus(M̂n(x),M̃(x)) and ∆̃n = sup

x∈D
∆̃n(x).

We consider function space

F =

{
(u,v) 7→ fx ,y (u,v) : fx ,y (u,v) = p̃−1

yy (x ,y) ×

K
(
||x −u||

h

)
K (1)

(
y −v

h

)
,x ∈ D,y ∈ M̃(x)

}
.

Let B be a Gaussian process defined on F such that ∀f1, f2 ∈F

Cov(B(f1),B(f2))=E(f1(Xi ,Yi) ·f2(Xi ,Yi))−E(f1(Xi ,Yi))·E(f2(Xi ,Yi)).
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Limiting Distribution
Consider an empirical process Gndefined on F as

Gn(f ) = n−1/2
n

∑
i=1

f (Di)−E(f (Di)), Di = (Xi ,Yi).

Theorem (Asymptotic Theory)

Under regularity conditions,
√

nhd+3∆̃n ≈ supf∈F {|Gn(f )|} ≈ supf∈F {B(f )} .
More precisely,

∣∣∣√nhd+3∆̃n−B
∣∣∣= OP

( log4 n
nhd+3

)1/8
 .

Since Gaussian Process involves unknown quantities, this in itself is
not sufficient to conduct statistical inferences.
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Bootstrap Consistency

We use bootstrap to approximate ∆n. We define another metric
∆̂∗n = supx∈D Haus(M̂∗n ,M̂n(x)).

Theorem
Under regularity conditions,

√
nhd+3∆̂∗n ≈ supf∈F |B(f )| for function space F ,
√

nhd+3∆̂∗n ≈
√

nhd+3∆̃n.

Interpretation This theorem brings forth an equivalence in
limiting distribution of ∆̂∗n and ∆̃n. Infact, The rate of convergence

in distribution is O
((

log4 n
nhd+3

)1/8
)

.
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Uniform Confidence Sets

Corollary (Uniform confidence sets)

Assume (A1-3) and (K1-2). Then as nh6

logn → ∞ and h→ 0,

P
(

M̃(x)⊆ M̂n(x)⊕ δ̂n,1−α , ∀x ∈ D
)
= 1−α +O

((
log4n
nhd+3

)1/8)
.

Therefore. the asymptotic valid confidence for M is given as{
(x ,y) : y ∈ M̂n(x)⊕ δ̂1−α ,x ∈ D

}
,

δ̂n,1−α is the upper 1−α quantile of ∆̂n.
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Bandwidth Selection

Prediction Sets

We define:

ε1−α(x) = inf{ε ≥ 0 : P(d(Y ,M(x))> ε | X = x)≤ α}.

ε1−α = inf{ε ≥ 0 : P(d(Y ,M(X ))> ε)≤ α}.

Definition (Pointwise Prediction Set)

P1−α(x) = M(x)⊕ ε1−α(x)⊆ R.

Definition (Uniform Prediction Set)

P1−α = {(x ,y) : x ∈ D, y ∈M(x)⊕ ε1−α} ⊆ D×R.
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Prediction Sets

We define:

ε1−α(x) = inf{ε ≥ 0 : P(d(Y ,M(x))> ε | X = x)≤ α}.

ε1−α = inf{ε ≥ 0 : P(d(Y ,M(X ))> ε)≤ α}.

Definition (Pointwise Prediction Set)

P1−α(x) = M(x)⊕ ε1−α(x)⊆ R.

Definition (Uniform Prediction Set)

P1−α = {(x ,y) : x ∈ D, y ∈M(x)⊕ ε1−α} ⊆ D×R.

29 / 33



Introduction
Estimation
Geometry

Consistency
Confidence Sets

Prediction Sets

Bandwidth Selection

Bandwidth Selection

We can choose the bandwidth of the KDE by minimizing the size
of the prediction set.
Choose

h∗ = argmin
h≥0

Vol(P̂1−α,h),

where P̂1−α,h is the estimated uniform prediction set.
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Bandwidth Selection

Bandwidth Selection: Example
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Figure: Bandwidth selection based on size of prediction sets.
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Bandwidth Selection

Final Remarks

We reviewed a nonparametric method for modal regression
estimation, based on a KDE of a joint sample of data points
(X1,Y1), . . . ,(Xn,Yn).
We studied some of the geometry underlying the modal
regression set, and described techniques for confidence set
estimation, prediction set estimation, and bandwidth selection for
the underlying KDE.
The main message is that nonparametric modal regression offers
a relatively simple and usable tool to capture conditional
structure missed by conventional regression methods.
For more information: Report R Codes

Thank You!
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https://github.com/ArkaB-DS/NPmodalReg/blob/main/Group7%20Report.pdf
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