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Motivation

@ Variable selection is a ubiquitous problem while dealing with
high-dimensional data, for example gene microarray data.

@ Many models make stringent assumptions on the error
distribution or the existence of moments - robust methods are
required!

@ LASSO - very popular variable selection methodology.

@ We present fast Rank-based LASSO methods for variable
selection that do not make the stringent assumptions and work
under high-dimensional settings and multicollinearity.

@ GOAL: We aim to identify the set of relevant predictors T:

T—{1<j<p:B#0}
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@ We consider the model as:

Yi=g(B'Xig), i=1....n (1)
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@ We consider the model as:

Yi=g(B'Xig), i=1....n (1)

@ f3 is a p-dimensional vector.

@ g(.) is an unknown monotonic link function. The covariates
influence the response through the link function g(.) of the scalar
product 8’ X;.

@ No assumptions are made on the form of the link function g or
the distribution of the error &;.
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Rank-LASSO

@ We define the rank R; corresponding to response Y; as:

@ The relevant covariates are identified by solving the following
rank-based LASSO problem:

RankLASSO: 6 =argminQ(0)+1|6]1, )
6cRP

where

18 /R 1 U\
Q(G)_mi21<n_2_9x’> . 3)
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Assumptions

Assumption (A1)

We assume that (X1, €1),...,(Xn,€n) are i.i.d. random vectors such
that the distribution of Xi is absolutely continuous and X is
independent of the noise variable €. Additionally, we assume that
E(X1) =0, H=E(XiX]) is positive definite and Hj =1 forj=1,...,p.

v
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Assumptions

Assumption (A1)

We assume that (X1, €1),...,(Xn,€n) are i.i.d. random vectors such
that the distribution of Xi is absolutely continuous and X is
independent of the noise variable €. Additionally, we assume that
E(X1) =0, H=E(XiX]) is positive definite and Hj =1 forj=1,...,p.

v

Assumption (A2)

We assume that for each 6 € RP, the conditional expectation
E(6’X1|B' X1) exists and (6’ X1|B’'X1) = dg 8’ X1 for a real number
dg eR.

\
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Assumptions

Assumption (A3)

We assume that the design matrix and the error term satisfy
Assumptions A1 and A2, the cumulative distribution function F of the
response variable Y1 is increasing and g in 1 is increasing with
respect to the first argument.

7134



Relation between Rank-LASSO estimate and 3

@ RankLASSO does not estimate 3, but the vector

6% = argminEQ(6) (4)
6cRP
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Relation between Rank-LASSO estimate and 3

@ RankLASSO does not estimate 3, but the vector

6% = argminEQ(6) (4)
6eRP

@ The minimizer 6° is given by the formula

1
0% = —H < Z R; x) (5)
@ Since
n n n n
YRX=Y YUY, <Y)X=YIY;<Y)Xi+ Y X
i=1 i=1j=1 i#f i=1
and that E(X;) = 0, we can rewrite (5) as 6y = —1H‘1u where

u=E[I(Y2 < Y1) Xi].
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Relation between Rank-LASSO estimate and 3

Theorem

Consider the model (1). If Assumptions (A1) and (A2) are satisfied,

then
0o = 18
v w2 Cov(F(Yh),B'X4)
Y= lg'Hﬁ =1 ﬁ'Hﬁ1 Lo (6)
where F is a cumulative distribution function of a response variable
Y;.

Additionally, if F is increasing and g is increasing with respect to the
first argument, then yg > 0, so the signs of B coincide with the signs
of 8° and

T={j:Bj#0}={j:6)#0}. (7)
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Relation between Rank-LASSO estimate and 3

@ Therefore, Rank-LASSO can be used for variable selection from
a large number of explanatory variables, as the support of
remains intact through the Rank-based LASSO model.
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Motivation

@ Presenting the important properties of Rank-LASSO via
non-asymptotic results.
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Motivation

@ Presenting the important properties of Rank-LASSO via
non-asymptotic results.

@ Ensuring applicability of the method for high-dimensional
scenario especially for p >> n.
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Assumption 4

Let (X1)1 be the vector of significant predictors and suppose that it is
subgaussian with coefficients 1y > 0 i.e for each u € RP> we have
Eexp(u’ (Xi)71) < exp(z2u’ u/2). Also we have, the insignificant
predictors are univariate subgaussian, i.e foreachaceR andj& T,
E(aXij) < exp(t?a®/2), for 7 > 0. Denote, T = max (%, 7,j & T).
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Characteristics measuring the potential for consistent
estimation of model parameters

@ Let T be the set of indices corresponding to the support of true
vector 3.
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Characteristics measuring the potential for consistent
estimation of model parameters

@ Let T be the set of indices corresponding to the support of true
vector 3.

@ Suppose that 67 and 61 be the restrictions of the vector 6 € RP
to indices of the indices from T and T, respectively.

@ For, { > 1, a cone can be considered,

C(E)={6eRP: |67 [y <071}
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Characteristics measuring potential for consistent
estimations of model parameters

@ Restricted Eigen Value (Bickel et al. (2009)):

TyT
RE()= inf 9 X X0

0£0€C(¢) N |61 |5
@ Compatibility Factor (Van de Geer (2008)):

- P08 XT X6
0£6<C(¢)  n|Or [2

K(¢)
@ Cone Invertibility Factor(CIF, Ye and Zhang (2010)):

_ V9 XTX0 |
FolO) = nf B0 X X0
0£0€C(()  N|Orlq
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Characteristics measuring potential for consistent
estimations of model parameters

@ Population version of CIF is given by,

1
= in 7,00/" [HO |-
0£0€C(() N |07 |q

Fq(&)

)

where H = E(XT X).
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Characteristics measuring potential for consistent
estimations of model parameters

@ Population version of CIF is given by,

1
= in 7,00/" [HO |-
0£0€C(() N |07 |q

Fq(&)

)

where H = E(XT X).
@ In this report the CIF will be used as it allows formulation of
convergence results for any /g norm, for g > 1.
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Estimation Accuracy of Rank-LASSO

Letae (0,1),g>1 and § > 1 be arbitrary. Suppose that the
assumptions A3 and A4 are satisfied. Also,

s Kapget(1+)?log(p/a)
- F2(¢)

{+1 o [log(p/a)
¢—1 kn

A> Ky

where K1, K> are universal constants and k is the smallest eigen
value of the correlation matrix between true predictor Hr = (H;)j keT-
. : 4
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Estimation Accuracy of Rank-LASSO

Then there exists a universal constant K3 such that,

4§p(1,/ql
(C+1)Fq(8)

6-6°|g<

with probability at least 1 — Kza
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Estimation Accuracy of Rank-LASSO

@ This theorem provides bound to the estimation error.
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Estimation Accuracy of Rank-LASSO

@ This theorem provides bound to the estimation error.

@ It does not require nto be very large. It allows p to increase
exponentially as a function of n.

@ By replacing a by a sequence ap, that does not decreases too
fast and replacing A by corresponding sequence A, based on ap,
the consistency conditions can be presented.

@ The consistency holds even when number of predictors is
significantly. larger than sample size.
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Separability of Rank-LASSO

Corollary

If the conditions of Theorem 2 are satisfied for q = «, then for

0 8¢A
0% > i we have,

P(VjeT,kgT |éj | > \ék ) >1—-Ksa

0 — min: 0
where 6, = minjcT |6} |

0
° 6min

0_ - N . 8LA
@ As, 6° = y3f3, according to Corollary 4 , minjet |B; | > (D)

can not be too small.
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Estimation Accuracy of Rank-LASSO

Corollary

Let a€ (0,1) be arbitrary and Assumptions A3 and A4 are satisfied.
Suppose that, there exists {5 > 1,Cy > 0 and C, < o such that
k> Cy,Fw(&) > Cy and t < C,. Then for,

n& > Kipglog(p/a),A > Kz\/@

we have ,
P(16-6°|..<41/Cy)>1-Kza (8)

where Ky, K> depend only on §y, Cy,Co and Ks is a universal constant
as mentioned in Theorem 2.

The above corollary is a simplified version of Theorem 2.
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nk-LASSO

Extensions to Rank-LASSO technique

@ Main drawback of Rank-LASSO that it can recover true model
only if irrepresentable condition is satisfied.
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nk-LASSO

Extensions to Rank-LASSO technique

@ Main drawback of Rank-LASSO that it can recover true model
only if irrepresentable condition is satisfied.

@ [f the condition does not hold, then we need to add a large
number of irrelevant predictors for the process to yield true
model.

@ We discuss following techniques by which this problem can be
solved.
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Weighted Rank-LASSO

Threshold Rank-LASSO
We consider thresholded RankLASSO, denoted by 61 and defined as
6" =011 >5), j=1,...p

where 8 is the RankLASSO esimator and & is a threshold.

Theorem

Assuming Cor. 5 holds, and selecting the sample size and tuning
parameter accordingly, if 9,9,,,,, /2> 6 > KyA, (K4 defined in Cor. 5, then

P(T"=T)>1-Kaa

where, T = {1 <j<p: 6" + 0} is the estimated estimated set of
relevant predictors by thresholded RankLASSO.
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Weighted Rank-LASSO

Thresholded RankLASSO

@ This suggests that the thresholded RankLASSO has potential for
identifying the support of B under milder regularity conditions.

@ This also suggests that under the conditions, the sequence of
models based on ranking provided by RankLASSO estimates
contain the true model.
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ded Rank-LASSO

Weighted RankLASSO

We redefine our objective function as follows:
p
Q(0)+ A Z w; |6
J=1

where A, > 0, with weights defined as follows: For an arbitrary
number K > 0 and the RankLASSO estimator 6,

w; = |6, for |§;] < A, and w; < K otherwise
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Thresholded Rank-LASSO

Weighted RankLASSO

Assuming Cor. 5 holds, let 2, = K4A, if 62, /2 > A5 and poA < Ks,
with Ks being sufficiently small, then there exists a global minimizer

62, such that 67 = 0 and

P[|63 - 69]; < K7poA] > 1 — Kpa
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Thresholded Rank-LASSO

Advantage of these modifications

@ Absolute value loss function is robust with respect to distribution
of noise variable.
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Thresholded Rank-LASSO

Advantage of these modifications

@ Absolute value loss function is robust with respect to distribution
of noise variable.

@ However, it requires that that the density of the noise is
continuous in a neighbourhood of 0.

@ The modifications suggested do not require such restrictions and
the procedures work well in single index models.
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Simulation Scenarios

Yi=B'Xi+¢
Xi~N(0,X)
ZZIOFij=1,ij:0.3
€ ~ Cauchy distribution

po € {3,10,20}
@ ne {100,200,300,400}
@ p < {100,400,900,1600}
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Simulation Scenarios

@ We also simulate the genotypes of p independent Single
Nucleotide Polymorphisms (SNPs)

@ Explanatory variables can take only three values: 0, 1 and 2.

@ Given the frequency 7; for j-th SNP, the explanatory variable Xj;
has the distribution:

P(Xj =0) = r?, P(Xj = 1) = 2m;(1-m)andP(X; = 2) = (1-7)°.

Here, m; ~ U(0,1,0.5).
o Yi=p'X+¢
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Simulation Scenarios

°
Yi =exp (1+0.058'X;) +¢;

(] X,‘ ~ N(O7 Z)

(] ij =03

@ & ~ Cauchy distribution

°

po € {3,10,20}
@ ne {100,200,300,400}
@ p < {100,400,900,1600}
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@ RankLasso (rL)

@ adaptive RankLasso (arlL)

@ thresholded RankLasso (thrL)
@ Lasso with cross-validation (cv)

@ NMP - average number of misclassified predictors
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Results
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Figure: Plots of NMP (average number of misclassified predictors) as the
function of p.
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Results
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function of p.
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Final Remarks

@ The methodology described does not require knowledge of the
distribution of the covariates or make moment assumptions on
the error distribution.
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Final Remarks

@ The methodology described does not require knowledge of the
distribution of the covariates or make moment assumptions on
the error distribution.

@ The RankLASSO is essentially a convex optimization problem.
Hence, it is computationally fast, even when p > > norin
presence of multicollinearity.

@ Under certain assumptions, the support of 6y coincides with that
of B.

@ Our simulations illustrate that the thresholded and adaptive
versions of RankLasso can properly identify the predictors even
when the link function is non-linear, predictors are correlated and
the error comes from the Cauchy distribution.

@ Some open questions: selection of optimal A, § and w;’s.

Thank Youl!
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