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Prediction Intervals

The goal of any prediction algorithm is to generate prediction sets for
unknown responses based on observed covariates with a pre-determined
level of coverage.

Assume {(Xi ,Yi)}n
i=1

i .i .d .∼ P, where P is an unspecified distribution and
(Xi ,Yi) ∈ Rd ×R.
For a chosen coverage level (1−α) ∈ (0,1), we want to construct a band
Γ̂, based on training data such that for a new i.i.d. test point (Xn+1,Yn+1),
we have,

P
[
Yn+1 ∈ Γ̂(Xn+1)

]
≥ 1−α (1)

We will call a confidence predictor Γ̂ to be valid if Eq. (1) holds.
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What is Conformal Inference?

Conformal Inference is a procedure which is used to construct prediction
bands as in Eq. (1) that have finite-sample (non-asymptotic) validity.

It is a powerful method since it focuses on a distribution-free approach to
the prediction problem.

Under some assumptions, this method can yield prediction sets with
exact validity.

Used to dynamically adjust prediction intervals for a new test point based
on observations in hand sequentially, making the problem immune to
overfitting.
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Naive Approach to Prediction Interval Construction

In regression setting, let {(Xi ,Yi)}n+1
i=1

i .i .d .∼ P and let µ̂ be estimator of
population regression function.
A naive prediction interval:

Γ̂naive(Xn+1) =
[
µ̂(Xn+1)− F̂−1

n (1−α), µ̂(Xn+1)+ F̂−1
n (1−α)

]
(2)

F̂n is the empirical distribution function of the fitted residual |Yi − µ̂(Xi)|
and F̂−1

n (1−α) is (1−α)-quantile for F̂n.
Approximately valid procedure but requires µ̂ to be accurate enough.
Requires appropriate regularity conditions on underlying data distribution
P and µ.
Generally yields narrower prediction intervals and leads to
undercoverage problems.
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General Conformal Inference Procedure

Let Zi = (Xi ,Yi) and Z = {Zi}n
i=1 be the data and (x ,y) be a test point.

Choose a score function S such that a low value of S((x ,y),Z ) indicates
that the point (x ,y) conforms to Z .
Calculate the nonconfomity scores ∀y ∈ R:

V (x ,y)
i = S(Zi ,Z1:n ∪{(x ,y)}), i = 1, . . . ,n, & V (x ,y)

n+1 = S((x ,y),Z1:n ∪{(x ,y)})

Include y in Γ̂(x) if V (x ,y)
n+1 ≤ Quantile(1−α;V (x ,y)

1:n ∪{∞}).

Theorem

Assume (Xi ,Yi) ∈ Rd ×R, i = 1, . . . ,n and that ties between V (Xn+1,Yn+1)
j ,

j = 1, . . . ,n+1 occur with probability 0. Define conformal band based on first n
samples at x ∈ Rd by

Γ̂n(x) =
{

y ∈: V (x ,y)
n+1 ≤ Quantile(1−α;V (x ,y)

1:n ∪{∞})
}

then, 1−α ≤ P
{

Yn+1 ∈ Γ̂n(Xn+1)
}
≤ 1−α +

1
n+1
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Survival Analysis

In time-sensitive data on diagnosis of any disease to an event time, it is of
crucial importance to have a proper prediction of survival times based on
a set of covariates.
Proper inference is difficult since often survival times are censored.
It is of interest to have guaranteed coverages with prediction intervals for
uncensored survival times.
Candès et al. (2023) extends conformal inference to handle Type-I right
censoring.
The goal is to generate distribution-free covariate-dependent lower
predictive bounds (LPB) on uncensored survival time.
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Setting the Problem

For i = 1, . . . ,n, let Xi be the vector of covariates, Ci the censoring time
and Ti be the survival time for the i th unit.

Assume {(Xi ,Ci ,Ti)}n
i=1

i .i .d .∼ (X ,C,T ).
In Type-I right censoring, we observe Xi , Ci and censored survival time
T̃i =min{Ti ,Ci}.

Assumption (Conditionally Independent Censoring)

T ⊥⊥ C |X

Assumption (Completely Independent Censoring)

(T ,X )⊥⊥ C
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Naive Lower Prediction Bound

Let’s look at the issues with generating naive LPB. A LPB L̂(.) is
calibrated is the following holds:

P[T ≥ L̂(X )]≥ 1−α

Note that, since T̃ ≤ T , a calibrated LPB on censored time T̃ is also a
calibrated LPB on uncensored survival time T .
Naive approach: Use any distribution-free prediction approach (eg. see
Vovk et al. (2022), Lei et al. (2016)) and generate calibrated LPB on T̃ .

Theorem
Assume that L̂(.) is a calibrated LPB on T , with (X ,C,T ) obeying conditionally
independent censoring assumption, then

P[T̃ ≥ L̂(X )]≥ 1−α
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Intuitively clear that LPB on T̃ will be conservative if our target is LPB on
T .

Note that under conditionally independent censoring regime,

P[T ≥ qα(x)|X = x ] = 1−α = P[T ≥ q̃α(x)|X = x ] ·P[C ≥ q̃α(x)|X = x ]

Distance between qα and q̃α increases with smaller censoring times.

If data is dominated with units with small censoring times, the resulting
LPB can be arbitrarily conservative.

The previous theorem highlights the validity of the LPB only on
conditionally independent censoring, which is a weaker assumption. We
need to involve more assumptions to overcome the limitation of the naive
LPB.
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Leveraging Censoring Mechanism

Since smaller censoring times make the LPB more conservative, maybe
discard units with small censoring times.
Extract a subpopulation on which C ≥ c0, for a selected c0 noting that

(X ,C,T )
d
̸= (X ,C,T )|C ≥ c0.

P(X ,T̃ ) = PX ×PT̃ |X and P(X ,T̃ )|C≥c0
= PX |C≥c0

×PT̃ |X ,C≥c0
. Working in this

setup is untractable even under completely independent censoring.
Consider a secondary censoring scheme where outcome is T̃ ∧c0.
Under conditionally independent censoring,

P(X ,T̃∧c0)|C≥c0
= PX |C≥c0

×PT∧c0|X

On the whole population, distribution can be written as:

PX ,T∧c0 = PX ×PT∧c0|X

Clearly, the secondary censoring scheme on the subpopulation leads to a
tractable problem of covariate shift.
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The likelihood ratio between the two covariate distributions is:

dPX

dPX |C≥c0

(x) =
P[C ≥ c0]

P[C ≥ c0|X = x ]

This special form of the distribution shift allows us to adjust for the bias by
carefully reweighting the samples.

Following Tibshirani et al. (2019), we can get LPB on T ∧c0 which is also
calibrated LPB on T .

Referring P[C ≥ c0|X = x ] = c(x ;c0) as the censoring mechanism, we
realize that it makes the overall problem easily estimable.

With sufficiently many samples with large C, we can choose a larger
threshold to reduce the loss of power induced by censoring.
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Weighted conformal inference

Based on the previous discussions, the goal now is to construct LPB L̂(.)
on T ∧c0 from training samples (Xi , T̃i ∧c0)C≥c0

= (Xi ,Ti ∧c0)C≥c0
such

that
P[T ∧c0 ≥ L̂(X )]≥ 1−α

To deal with covariate shifts, following Tibshirani et al. (2019), we use
weighted conformal inference.

Idea: Suppose training samples (Xi ,Yi)
n
i=1

i .i .d .∼ PX ×PY |X and we wish to
construct prediction intervals for test points drawn from QX ×PY |X .
Assuming w(x) = dQX (x)/dPX (x) is known, we generate Γ̂ such that

P(X ,Y )∼QX×PY |X [Y ∈ Γ̂]≥ 1−α

In our case, the outcome is T ∧c0 and covariate shift is
w(x) = [C ≥ c0|X = x ]/c(x ;c0).
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Algorithm 1 Weighted Conformalized Survival Analysis

Input: Level α; Data Z = (Xi , T̃i ,Ci)i∈I ; Testing point x ;
Function V (x ,y ;D): the conformity score between (x ,y) and data D;
Function ŵ(x ,D) to fit the weight function at x using D;
Function C(D) to select the threshold c0 using D.

Procedure:
1 Split Z into training fold Ztr ≜ (Xi , T̃i ∧c0)i∈Itr and a calibration fold

Zca ≜ (Xi , T̃i ∧c0)i∈Ica .
2 Select c0 = C(Ztr ) and let I ′

ca = {i ∈ Ica : Ci ≥ c0}.
3 For each i ∈ I ′

ca, compute the conformity score Vi = V (Xi , T̃i ∧c0;Ztr ).
4 For each i ∈ I ′

ca, compute the weight Wi = ŵ(Xi ;Ztr ) ∈ [0,∞).
5 Compute weights p̂i(x) =

Wi
∑i∈I′ca

Wi+ŵ(x ;Ztr )
, p̂∞(x) =

ŵ(x ;Ztr )
∑i∈I′ca

Wi+ŵ(x ;Ztr )
.

6 Compute η(x) = Quantile
(

1−α;∑i∈I′ca
p̂i(x)δVi + p̂∞(x)δ∞

)
.

Output: L̂(x) = inf{t : V (x , t ;Ztr )≤ η(x)}∧c0
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In Algorithm 1, unknown covariate shift ŵ(x) can be estimated using
training fold.
ŵ(x ;Ztr ) = ∞ =⇒ p̂∞ = 1 =⇒ L̂(x) =−∞.
η(x) is invariant to positibe rescalings of ŵ(x). We can easily set
ŵ(x) = 1/ĉ(x ;c0).
Choice of conformity score V (x ,y ;D):

Conformalized Mean Regression (CMR) scores defined via
V (x ,y ;Ztr ) = m̂(x)−y , where m̂(x)(.) is an estimate of mean of Y |X . The
resulting LPB is then m̂(x)−η(x))∧c0.
Conformalized Quantile Regression (CQR) scores defined via
V (x ,y ;Ztr ) = q̂α (x)−y , where q̂α (.) is estimate of α-quantile of Y |X . The
resulting LPB is then (q̂α −η(x))∧c0.
Conformalized Distribution Regression (CDR) scores defined via
V (x ,y ;Ztr ) = α − F̂Y |X=x (y), where F̂Y |X=x (y) is an estimate of distribution
of Y |X . The resulting LPB is then F̂−1

Y |X=x (α −η(x))∧c0.

Theorem
Let c0 be independent of Zca, with target Ti ∧c0 in Algorithm 1 and
ŵ(w ;D)≡ 1. Under completely independent censoring, L̂(X ) is calibrated.
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Doubly Robust Lower Prediction Bounds

Under conditionally independent censoring assumption, c(x ;c0) needs to
be estimated.
Instead of using procedures like Kernel estimation or bootstrapping, we
can adapt the mechanism proposed in Lei and Candès (2021), i.e.
weighted split conformal inference.
If we estimate conditional quantile of the survival function and the
censoring mechanism from two datasets which have been obtained by
splitting the training set, we obtain a doubly robust LPB, i.e. we get
guaranteed average coverage if either covariate shift or conditional
quantiles are estimated well.
The double robustness of weighted split conformal inference allows
researchers to leverage the knowledge about both the conditional
quantile and censoring mechanism with any concern for which is more
accurate.

16 / 19



Choice of Threshold

The threshold c0 induces an estimation-censoring tradeoff: larger c0
overcomes the censoring effect, closing gap between target T and the
operating outcome T ∧c0, but reduces sample size for the estimation
problem.
Ideal steps to generate data-driven threshold:

1 Set a grid of values for c0.
2 Randomly sample a holdout set from Ztr
3 Apply Algorithm 1 on rest of Ztr for each value for c0 to generate LPBs for

each unit in the holdout set.
4 Select c0 which maximizes the average LPB’s on the holdout set

If the holdout set is the calibration set itself, resulting LPBs will be
approximately calibrated. To be specific,

ĉ0 = argmax
c0∈C

1
|Ica| ∑

i∈Ica

L̂c0(Xi)

where C is a candidate set for c0.
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Concluding Remarks

This method has been found to have better coverage in comparison to
well established prediction techniques like cox-proportional hazard
model, accelerated failure time model, censored quantile regression etc,
most of which yield bands which are not valid.
Under suitable assumptions, this method can be adapted to handle both
end-of-study censoring caused by the trial termination as well as
loss-to-follow-up censoring caused by unexpected attrition.
The method can also be suitably extended to handle inference based on
two or more subpopulation as well as in cohort analysis.
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